项目名称: 可降解介孔磷酸钙的制备、功能化及肿瘤靶向治疗的基础研究

项目编号: No.51472259

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 陈峰

作者单位: 中国科学院上海硅酸盐研究所

项目金额: 80万元

中文摘要: 无机介孔载体具高比表面积和多孔结构,广泛用于药物递送、成像等生物医学研究。常规无机介孔载体不易生物降解,限制了进一步的临床应用。发展具有高比表面积、可降解的新型无机介孔载体材料具有重要研究意义。本项目创新地提出以人体天然无机组分磷酸钙为主体材料,构建具高比表面积(>300 m2/g)、可降解的新型功能化介孔载体系统,并实现抗肿瘤药物的靶向/pH敏感的递送和荧光/核磁共振成像的实时检测。具体是以ATP等天然含磷生物分子为磷源和调控剂,通过酶催化等方法制备高分散性、可控尺寸的介孔磷酸钙,通过装载荧光/核磁共振成像分子及表面接枝肿瘤靶向基团(RGD、叶酸)实现多功能化。深入研究含磷生物分子在材料构建中涉及的关键科学问题,阐明其调控、改性作用的基本规律;系统研究介孔磷酸钙载体的理化/生物学性质,肿瘤模型的活体成像和治疗性能。通过以上努力,为生物医用可降解新型功能化无机介孔载体材的制备提供理论支持。

中文关键词: 羟基磷灰石;生物医用材料;介孔材料;纳米药物载体;纳米生物材料

英文摘要: Mesoporous inorganic carriers with a high specific surface area and porous structure are widely used in biomedical field including drug delivery, bio-imaging, and so on. Conventional mesoporous inorganic carrier are not biodegradable, limiting their further clinical applications. Development of new inorganic carrier material with high surface area, biodegradability, mesoporous structure is very significant. This project was first proposed to build a new functionalized mesoporous carrier systems with high specific surface area (> 300 m2/g), biodegradability, targeted/pH sensitive anticancer drugs delivery and real-time fluorescence/magnetic resonance imaging, using calcium phosphate (CaP) which is the main component of natural inorganic materials in the body. Specifically, biological molecules containing phosphorus such as ATP will be used to prepare mesoporous CaP with high dispersion and uniform size. Thereafter, the functional molecules of fluorescent/magnetic resonance imaging will be loaded into the mesoporous CaP carrier to achieve multifunction, after grafting tumor targeting group (RGD, folic acid). We will deeply study the scientific issues of biological molecules containing phosphorus, and clarify the basic laws and effects of these molecules on the regulation and modification of the mesoporous CaP materials. Then, systematic study the physicochemical/biological properties, in vivo tumor imaging and therapy of the as prepared functional mesoporous CaP carrier. Through these efforts, we hope to develop and provide a scientific basis for a novel biodegradable functional mesoporous inorganic carrier.

英文关键词: Hydroxyapatire;Biomedical Materials;Mesoporous Materials;Nano Drug Carriers;Nano Biomaterials

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月23日
小米在预训练模型的探索与优化
专知会员服务
18+阅读 · 2020年12月31日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月23日
小米在预训练模型的探索与优化
专知会员服务
18+阅读 · 2020年12月31日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
相关基金
微信扫码咨询专知VIP会员