Accurate segmentation of power lines in various aerial images is very important for UAV flight safety. The complex background and very thin structures of power lines, however, make it an inherently difficult task in computer vision. This paper presents PLGAN, a simple yet effective method based on generative adversarial networks, to segment power lines from aerial images with different backgrounds. Instead of directly using the adversarial networks to generate the segmentation, we take their certain decoding features and embed them into another semantic segmentation network by considering more context, geometry, and appearance information of power lines. We further exploit the appropriate form of the generated images for high-quality feature embedding and define a new loss function in the Hough-transform parameter space to enhance the segmentation of very thin power lines. Extensive experiments and comprehensive analysis demonstrate that our proposed PLGAN outperforms the prior state-of-the-art methods for semantic segmentation and line detection.
翻译:各种航空图像中电线的准确分解对于无人驾驶飞行器飞行安全非常重要。 但是,由于电线的背景复杂,结构非常薄,因此在计算机视觉中是一项固有的困难任务。本文介绍了PLGAN,这是基于基因对抗网络的一种简单而有效的方法,从不同背景的航空图像中分离出电线。我们不直接利用对称网络产生分解,而是利用它们的某些解码功能,并通过考虑更多电线的上下文、几何和外观信息将其嵌入另一个语系分解网络。我们进一步利用生成的图像的适当形式来嵌入高品质特征,并定义了Hough-变形参数空间的新损失功能,以加强非常薄的电线的分解。广泛的实验和全面分析表明,我们提议的PLGAN超越了先前的语系分解和线探测的最新方法。