项目名称: 分数阶微积分函数的分形维数估计及其应用
项目编号: No.11201230
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 梁永顺
作者单位: 南京理工大学
项目金额: 22万元
中文摘要: 本项目针对闭区间上图像具有分形结构的的且很难用经典微积分来刻画的连续函数,提出使用分数阶微积分的方法,研究此类函数的局部结构和函数分形维数的变化情况。项目采用Holder条件的方法估计函数的分数阶微积分的分形维数的上界,采用Box维数和分布函数的方法估计函数的分数阶微积分的分形维数的下界。从而证明在适当条件下,函数的分形维数的变化是线性的,即与分数阶微积分的阶之间存在着线性关系。本项目把研究所得结论应用于焊接图像的处理中,帮助评价焊接质量,同时应用到网络数据流量的拟合分析中。研究分形函数的分数阶微积分的性质和分形维数的变化情况,对推动分数阶微积分的研究具有十分重要的理论意义。研究所得结论在网络数据流的拟合与焊接图像处理的应用,对分数阶微积分理论应用到医学图像处理、自动控制理论、复杂网络传输等工程实践中具有重要的实际意义。
中文关键词: 分形函数;分形维数;分数阶微积分;变差;
英文摘要: The present project examines the continuous functions whose graphs display fractal features and which are difficult to describe by classical calculus on the closed interval. Fractional calculus has been used to discribe the local structures of such functions, and to estimate the fractal dimensions of them. We estimate the upper bound of the fractal dimensions of fractional calculus of functions by method of Holder conditions, and estimate the lower bound of the fractal dimensions of fractional calculus of functions by method of the Box dimension or the method of distrubution functions. We want to prove the relationship between the fractal dimensions of functions and the fractal dimensions of fractional calculus of functions is linear under the appropriate conditions. The conclusions of this project have been used to deal with the welding image processing and to fit the network data stream. So we can help to evaluate the quality of welding. It is of great theoretical important to make research on properties and the fractal dimensions of fractional calculus of such functions. Applications of study conclusions in fitting network data stream and welding image processing show that the practical importance of fractional calculus theory applied to medical image processing, automatic control theory, complex network t
英文关键词: fractal function;fractal dimension;fractional calculus;bound;