项目名称: 一类空间奇异反应对流扩散方程的行波解与交互作用
项目编号: No.11201402
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 刘乃伟
作者单位: 烟台大学
项目金额: 22万元
中文摘要: 反应扩散方程的行波解理论是数学生态学的重要研究内容。当前,气候变化(如全球变暖)对种群动力学行为产生重要影响。研究受气候变化影响的种群动力学模型具有重要的理论意义和广泛的应用背景。本项目将借助于非线性分析、半群理论、偏微分方程、动力系统和数学生态学原理等理论研究一类受气候变化影响的种群动力学模型。具体而言,研究一类从该模型中抽象出来的含对流作用的空间奇异反应扩散方程的行波解及其交互作用;研究行波解的存在性、指数渐近衰减估计及稳定性,分析方程中对流项对行波解临界波速值产生的影响;利用比较原理,上下解技术,描述方程行波解的交互作用,建立方程整体解的存在性理论,刻画整体解的一些新性质。可望通过发展一些新的研究方法,建立一些具有创新性的抽象结果。并结合具体模型,对解释和控制诸如物种如何适应气候变化等实际问题提供理论依据。
中文关键词: 反应扩散方程;行波解;交互作用;整体解;空间异质
英文摘要: The theory of traveling wave solutions for reaction diffusion equations is a important research topic in mathematical ecology. In the present, a model to study the impact of climate change (global warming) on the survival and dynamics of species was proposed. Affected by climate change, population dynamics model has important theoretical significance and wide application background. This project will study a class, population dynamics model, which affected by climate change. By using semigroup theory, the maximum principle for parabolic equations and the theory of dynamical systems and mathematical ecology, we study traveling wave solutions and their interactions of reaction diffusion equations in heterogeneous media, which are abstracted from the biological model; study the existence, exponential asymptotic decay estimates and stability of traveling wave solutions,study the impact of convective terms on the critical wave speed. By using comparison principle, upper and lower solution techniques, we describe the interaction of traveling wave solutions, depict some of the new nature of the entire solution. Expected through the development of new research methods, we will establish a number of innovative abstract results, which will be used to explain and control the population changes of particular models in pract
英文关键词: Reaction diffusion equation;traveling wave solution;interaction;entire solution;heterogeneous