项目名称: 微分包含问题研究及其在分布参数控制系统中的应用

项目编号: No.11201410

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 朱兰萍

作者单位: 扬州大学

项目金额: 22万元

中文摘要: 本项目首先研究非Lipschitzian半群的一些重要性质,并运用零点扰动与构造正则的Hausdorff非紧性测度技巧结合Banach空间几何理论和不动点理论研究抽象空间中非局部(脉冲型)微分包含(周期)解的存在性。拟讨论在半群没有紧性甚至等度连续性以及非局部项具备不同拓扑时解的存在性,并将引入殆非扩张曲线的概念,希望利用殆非扩张曲线的性质研究解的渐近行为。其次,把微分包含的相关研究结果应用到分布参数控制系统中,具体讨论由抽象空间中微分包含所描述的无穷维控制系统的可控性问题。最后,我们拟讨论由非局部微分包含描述的分布参数系统的一类最优控制问题,例如电能转换成热能过程中,在给定的性能指标集中寻找最优控制使得电能的总消耗达到最小的最优控制问题。本项目预期研究结果不仅对微分包含理论的完善和发展具有积极的意义,还将对其他相关研究领域,如无穷维动力系统、控制论和最优化等理论的研究具有十分重要的意义。

中文关键词: 微分包含;算子半群;渐近性质;脉冲型发展方程;最优控制

英文摘要: In this project we shall first study some important propeties of non-Lipschitzian semigroup and deal with the existence of (periodic) solutions of nonlocal (impulsive) differential inclusions in abstract spaces. By using the method of zero perturbation, the technique of constructing regular Hausdorff measure of noncompactness and the theory of geometry of Banach spaces and fixed points, we shall discuss the problems of differential inclusions without assumptions on the compactness or equicontinuity of the semigroup and consider the above problems when nonlocal items have different topology. We shall also introduce the concept of almost non-expansive curves and want to investigate the asymptotic behaviour by utilizing the properties of almost non-expansive curves. Subsequently, related research results of differential inclusions will be applied to the distributed parameter control system. We shall discuss in detail controllability problems of infinite dimension control system described by abstract differential inclusions in Banach spaces. Finally, we shall investigate a class of optimal control problem of distributed parameter system described by nonlocal differential inclusions. For example, during the process of electric energy being converted into heat, a typical problem is to find at least one optimal

英文关键词: differential inclusions;semigroup of operators;asymptotic property;impulsive evolution equations;optimal controls

成为VIP会员查看完整内容
0

相关内容

逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
139+阅读 · 2020年12月3日
专知会员服务
34+阅读 · 2020年11月26日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
机器学习领域必知必会的12种概率分布(附Python代码实现)
算法与数学之美
21+阅读 · 2019年10月18日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
从动力学角度看优化算法:GAN的第三个阶段
PaperWeekly
11+阅读 · 2019年5月13日
干货:复杂网络及其应用简介
数据猿
25+阅读 · 2018年12月21日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
生成对抗网络的研究进展与趋势
中国计算机学会
35+阅读 · 2018年11月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
14+阅读 · 2021年6月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关主题
相关VIP内容
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
139+阅读 · 2020年12月3日
专知会员服务
34+阅读 · 2020年11月26日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
机器学习领域必知必会的12种概率分布(附Python代码实现)
算法与数学之美
21+阅读 · 2019年10月18日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
从动力学角度看优化算法:GAN的第三个阶段
PaperWeekly
11+阅读 · 2019年5月13日
干货:复杂网络及其应用简介
数据猿
25+阅读 · 2018年12月21日
基于数据的分布式鲁棒优化算法及其应用【附PPT与视频资料】
人工智能前沿讲习班
26+阅读 · 2018年12月13日
生成对抗网络的研究进展与趋势
中国计算机学会
35+阅读 · 2018年11月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员