Text to speech (TTS), or speech synthesis, which aims to synthesize intelligible and natural speech given text, is a hot research topic in speech, language, and machine learning communities and has broad applications in the industry. As the development of deep learning and artificial intelligence, neural network-based TTS has significantly improved the quality of synthesized speech in recent years. In this paper, we conduct a comprehensive survey on neural TTS, aiming to provide a good understanding of current research and future trends. We focus on the key components in neural TTS, including text analysis, acoustic models and vocoders, and several advanced topics, including fast TTS, low-resource TTS, robust TTS, expressive TTS, and adaptive TTS, etc. We further summarize resources related to TTS (e.g., datasets, opensource implementations) and discuss future research directions. This survey can serve both academic researchers and industry practitioners working on TTS.
翻译:作为语言、语言和机器学习界的一个热门研究课题,并广泛应用于这一行业。随着深层学习和人工智能的发展,基于神经网络的TTS近年来大大提高了综合言语的质量。我们在本文件中对神经TS进行全面调查,目的是使人们很好地了解目前的研究和今后的趋势。我们侧重于神经TTS的关键组成部分,包括文字分析、声学模型和vocockers,以及若干先进课题,包括快速TTS、低资源TTS、强力TTS、直观TTTS和适应性TTS等。我们进一步总结与TTS有关的资源(例如数据集、开源实施)并讨论未来的研究方向。这一调查可以为从事TTS工作的学术研究人员和业界从业人员服务。