项目名称: 随机激励的拟哈密顿系统的平稳概率密度追踪控制
项目编号: No.11302123
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 朱晨烜
作者单位: 上海电机学院
项目金额: 21万元
中文摘要: 非线性随机系统概率密度追踪控制的问题,在国内尚缺乏深入细致的研究,然而在国际同行近十几年的研究成果中可以看出,关于这类问题的研究涉及国防、通信、化工、过程工业、经济、生态等多个重要领域,因此研究非线性随机系统概率密度的追踪控制具有重要的理论意义及工程应用价值。本项目以拟哈密顿系统为对象,研究系统输出的概率密度追踪控制的设计方法,并考虑了高斯、谐和、宽带、有界噪声等多种不同的随机激励的影响。基本研究方法是:基于拟哈密顿系统随机平均法,对不同的随机激励分别得到相应的平均FPK方程和漂移、扩散系数。再针对目标给定的概率密度函数,通过求解高维的平均FPK方程得到控制力的解析表达式。最后用Lyapunov函数方法和相应的微分算子证明受控系统的收敛性,并用数值模拟验证。通过三年的研究,建立起行之有效的理论方法,并力求将其应用于工程领域中相关问题的解决。
中文关键词: 非线性随机系统;平稳概率密度函数;追踪控制;随机平均法;收敛性
英文摘要: The probability density function(PDF) tracking control of nonlinear stochastic system has not been studied very systematically and profoundly in domestic. However, from the researchs of international fellows in last decade, this kind of stocastic tracking control problem relating to national defense, communications, chemical industry, process industry, economy, ecology, etc very important areas. Thus, the PDF tracking control for nonlinear stochastic system has important significances and engineering application values. In the present project, the tracking control of quasi-Hamilton system for tracking a specified stationary PDF is studied, where some significant factors,including excitations of Gaussian, harmonic, wide-band, narrow-band noises and so on are considered. The main procedures are as follow: firstly, by using the stochastic averaging method based on the generalized harmonic functions, the averaged Fokker-Planck-Kolmogorov(FPK) equation and drift, diffusion coefficients can be derived under different excitations. Then, the analytic expressions of the control forces are obtained by solving the averaged FPK equation. By using a Lyapunov function method and the corresponding differential operator, it is proved that the probability density of the controlled nonlinear system indeed converges to the given
英文关键词: nonlinear stochastic systems;stationary probability density;tracking control;stochastic averaging method;convergence