项目名称: 三维衍射光栅及非周期结构的数值模展开法
项目编号: No.11301265
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 宋大伟
作者单位: 南京航空航天大学
项目金额: 22万元
中文摘要: 对于电磁波、光波或声波,麦克斯韦(Maxwell)方程和亥姆霍兹(Helmholtz)方程是主要的方程。数值方法在分析复杂结构中的波传播问题时是必不可少的。在很多实际应用中会遇到各种周期结构,例如衍射光栅。对二维周期结构,已有很多标准的数值方法。但是对两个方向都具有周期性的三维衍射光栅,现有的数值方法,如傅里叶模展开法(FMM)和有限元法(FEM)的计算效率并不高。在我们前期的研究工作中,对二维结构给出了一种伪谱模展开法,这是目前最有效的方法之一。我们期望将这种二维问题的伪谱模展开法推广到三维问题,从而得到一种比已有方法精度更高的算法。另一方面,对非周期结构,即使是二维问题也并不是很容易解决的。我们期望用带完美匹配层(PML)的伪谱模展开法来解决非周期问题。本项研究目的是为三维衍射光栅和非周期结构的研究分析开发新的更有效的数值算法,从而更好地服务于光学元件的研究和制造。
中文关键词: 衍射光栅;光波导;数值算法;伪谱法;
英文摘要: The Maxwell and Helmholtz equations are the governing equations for electromagnetic waves, light or sound waves. Numerical methods are essential and important for analysing wave propagation in complicated structures appeared in real world applications. Periodic structures such as diffraction gratings appear in many important applications. For 2D periodic structures, there are many standard numerical methods. But for 3D structures with two periodic directions, existing numerical methods, such as the Fourier Modal Method (FMM) and the finite element method (FEM) are not very efficient. For 2D structures, the Pseudospectral Modal Method (PSMM) given in our previous work is one of the most efficient methods. We propose to extend the 2D pseudospetral modal method to 3D problems, and hope to get better convergence than the existing methods. On the other hand, non-periodic structures, even 2D problems, are not so easy to handle. We propose to extend the pseudospectral modal method with the Perfectly Matched Layer (PML) to handle non-periodic problems. The aim of this research is to provide new and more efficient numerical methods for 3D diffraction gratings and related non-periodic structures, so as to reduce costs and improve efficiencies for the design and development of photonic devices.
英文关键词: Diffraction Gratings;Optical waveguides;Numerical Method;Pseudospectral Method;