项目名称: Stokes/Darcy 耦合问题的数值方法及预处理技术研究
项目编号: No.11501116
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 王伟伟
作者单位: 福州大学
项目金额: 18万元
中文摘要: 本项目主要研究由自由流体区域中的Stokes方程、多孔介质区域中的Darcy方程、以及某些合适的交界面条件构成的Stokes/Darcy耦合模型。我们将对该耦合模型中的热点问题展开理论和数值两方面的研究,具体内容包括:首先建立Stokes/Darcy耦合问题的广义MAC格式,以及发展针对该耦合问题的无核边界积分法,对其进行数值求解;然后在此基础上进一步构造该耦合问题的预处理矩阵,并应用预处理共轭梯度迭代法进行更高效的数值求解;最后建立相关的Stokes-Darcy-Transport问题的算法设计和数值分析。我们的研究结果不但会丰富计算流体力学相关数值理论,并为实际应用提供数学角度的理论指导与数值预测,而且还为将来研究更复杂的非稳态Navier-Stokes/Darcy耦合模型奠定基础。
中文关键词: 计算流体动力学;谱方法;有限差分方法;流体力学中的数值计算;结构网格
英文摘要: In this project, we will study the coupling of Stokes/Darcy equations. The model of Stokes/Darcy coupled equations is a combination of the Stokes equations in the free fluid region and Darcy equations in the porous media region, coupled with the appropriate interface conditions. We are interested in numerical analysis and calculations of the coupled Stokes/Darcy equations. The problems under consideration are: Firstly, developing the generalized MAC scheme of the coupled Stokes/Darcy equations, and developing the kernel free boundary integral method to solve the coupled problem. Then, constructing the preconditioning matrix of the Stokes/Darcy system, and using preconditioned conjugate gradient method to solve the problem more efficiently. Finally, considering the design and analysis of numerical method for Stokes-Darcy-Transport coupled system. Our study will not only enrich the numerical theory of computational fluid mechanics, but also provide theoretical guidance and numerical prediction for practical application. It also will lay a foundation for the study of unsteady Navier-Stokes/Darcy coupling equations in future.
英文关键词: Computational fluid dynamics;Spectral method;Finite difference method;Numerical calculation of fluid mechanics;Structured grid