项目名称: 建筑工人行为分析理解及其在施工管理中的应用研究
项目编号: No.51208425
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 建筑环境与结构工程学科
项目作者: 杨珺
作者单位: 西北工业大学
项目金额: 25万元
中文摘要: 建筑工人作为施工活动的直接执行者,其行为与生产效率、工程进度有着密切联系。针对我国施工管理信息化、自动化、标准化程度低的现状,以构筑智能化施工管理体系为目标,提出研究建筑工人行为自动分析理解方法的现实需求。利用建筑施工中广泛存在的视觉传感器信息,开展以下两方面研究:第一、工人施工行为的机器分析理解方法研究;第二、施工行为与施工效率、进度的关系研究。摒弃传统的基于目标跟踪、运动分割的特征提取步骤,引入非监督学习机制直接从图像序列学习运动特征;建立"概率潜在语义分析"新模型,将两级模式识别过程整合,构建基于机器视觉的施工行为自动分析理解新算法。以核心施工任务为导向进行施工采样,将样本权重引入施工效率评估;对比施工行为分析结果与4D工程信息评估工程进度;从图论的角度分析施工任务间的相互关联,预测样本施工行为对工程进度的影响,构建施工效率、进度自动评估的新机制,为智能化施工管理奠定基础。
中文关键词: 工人行为;生产效率;计算机视觉;模式识别;
英文摘要: As the key operator of the construction project, the workforce's behavior is closely related with productivity and progress. Currently, the construction management in China is still labor intensive, which can not fulfill the requirements of informatization, automization and standardization. To build up an intelligent construction management scheme, research on automatic analysis of the workforce behavior is proposed. Taking advantage of the video taken by widely used cameras in construction sites, the proposed research contains two aspects: one is machine vision based automatic analysis of workforce behavior; the other is the relationship between workforce behavior and construction management. The traditional tracking and segmentation based feature extraction strategy is abandoned. Unsupervised learning is applied to image sequences for motion features capture instead. Then, the probabilistic latent semantic analysis (pLSA) is used to integrate the two layers of pattern recognition tasks - 'action recognition' and 'behavior recognition'. A new scheme of workforce behavior analysis is established herein. As for the construction management, the research mainly focuses on the evaluation of productivity and progress. A sampling strategy is presented by considering the importance of different construction activities.
英文关键词: Workforce behavior;Productivity;Computer vision;Pattern recognition;