In this work we study the decidability of a class of global modal logics arising from Kripke frames evaluated over certain residuated lattices, known in the literature as modal many-valued logics. We exhibit a large family of these modal logics which are undecidable, in contrast with classical modal logic and propositional logics defined over the same classes of algebras. This family includes the global modal logics arising from Kripke frames evaluated over the standard Lukasiewicz and Product algebras. We later refine the previous result, and prove that global modal Lukasiewicz and Product logics are not even recursively axiomatizable. We conclude by solving negatively the open question of whether each global modal logic coincides with its local modal logic closed under the unrestricted necessitation rule.
翻译:在这项工作中,我们研究了由Kripke框架产生的一组全球模式逻辑的可变性,这些逻辑是在文献中被称为多值逻辑的模型,我们展示了这些模式逻辑的庞大大家庭,这些模式逻辑是不可变的,与传统模式逻辑和对同类代数界定的假设逻辑形成对照。这个大家庭包括由Kripke框架产生的、对标准的Lukasiewicz和产品代数进行评估的全球模式逻辑。我们后来完善了先前的结果,并证明全球模式Lukasiewicz和产品代数的逻辑甚至不能连附。我们最后以否定的方式解决了一个开放的问题,即每个全球模式逻辑是否与在不受限制的必要性规则下封闭的当地模式逻辑一致。