项目名称: 一类反射倒向随机微分方程的性质及其应用

项目编号: No.11126208

项目类型: 专项基金项目

立项/批准年度: 2012

项目学科: 金属学与金属工艺

项目作者: 黄宗媛

作者单位: 山东大学

项目金额: 3万元

中文摘要: 本项目拟以经典的随机分析理论为基础,深入研究反射倒向随机微分方程的相关理论及其应用,包括生成元为二次增长且终端条件无界情形下解的相关性质及其与偏微分方程的关系,多维情形下反射倒向随机微分方程的性质等,并探讨在金融、经济和保险等领域的应用。目的是得到一些具有较强创新性且具有广阔应用前景的理论成果,同时应用本项目的理论结果解决一些递归效用、最优投资策略选择等有趣的实际问题,丰富随机分析及金融数学等相关学科领域的内容。

中文关键词: 反射倒向随机微分方程;比较定理;粘性解;最优投资;

英文摘要:

英文关键词: Reflected BSDE;comparison theorem;viscosity solution;optimal investment strategy;

成为VIP会员查看完整内容
0

相关内容

【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
44+阅读 · 2021年5月24日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】信息论原理,774页pdf
专知会员服务
254+阅读 · 2021年3月22日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
86+阅读 · 2020年8月2日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
智能合约的形式化验证方法研究综述
专知
15+阅读 · 2021年5月8日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
82页《现代C++教程》:高速上手C++ 11/14/17/20
专知
20+阅读 · 2020年10月19日
Pupy – 全平台远程控制工具
黑白之道
43+阅读 · 2019年4月26日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
23+阅读 · 2022年2月4日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
小贴士
相关主题
相关VIP内容
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
44+阅读 · 2021年5月24日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】信息论原理,774页pdf
专知会员服务
254+阅读 · 2021年3月22日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
86+阅读 · 2020年8月2日
相关资讯
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
智能合约的形式化验证方法研究综述
专知
15+阅读 · 2021年5月8日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
82页《现代C++教程》:高速上手C++ 11/14/17/20
专知
20+阅读 · 2020年10月19日
Pupy – 全平台远程控制工具
黑白之道
43+阅读 · 2019年4月26日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员