Neural networks and particularly Deep learning have been comparatively little studied from the theoretical point of view. Conversely, Mathematical Morphology is a discipline with solid theoretical foundations. We combine these domains to propose a new type of neural architecture that is theoretically more explainable. We introduce a Binary Morphological Neural Network (BiMoNN) built upon the convolutional neural network. We design it for learning morphological networks with binary inputs and outputs. We demonstrate an equivalence between BiMoNNs and morphological operators that we can use to binarize entire networks. These can learn classical morphological operators and show promising results on a medical imaging application.
翻译:从理论角度看,相对较少研究神经网络,特别是深层学习。相反,数学生理学是一个有坚实理论基础的学科。我们把这些领域结合起来,提出一种在理论上更能解释的新型神经结构。我们引入了以进化神经网络为基础的二元精神神经网络(BIMONN),我们设计它是为了学习具有二进制投入和产出的形态网络。我们展示了BIMONS和形态操作者之间的等同性,我们可以用来使整个网络实现二进制。它们可以学习古典形态操作者,并在医学成像应用中展示出有希望的结果。