项目名称: 最小最大时间问题与切锥公式
项目编号: No.11271274
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 何诣然
作者单位: 四川师范大学
项目金额: 49万元
中文摘要: 本项目研究最小时间问题的最优值函数的次微分、最大时间问题的最优值函数的次微分、非正则包含问题的切锥刻画。最优值函数的次微分属于最优化问题的灵敏性分析。尽管关于抽象的最优化问题已经有很多灵敏性分析的结果,但是最小时间问题有特殊的结构,利用其结构所得到的结果更细致,而且是抽象最优化问题所没有的。我们不要求"集合的有界性"这一传统假设,这是与该问题其他研究成果最主要的不同。最大时间问题涵盖最优化领域内著名的最小球包问题作为特例,目前几乎没有关于其最优值函数次微分的结果,我们将尝试讨论。最大时间问题与最小时间问题都与距离函数密切相关。与距离函数有密切联系的还有集合的切锥,它通过距离函数的方向导数刻画。具有正则性的非线性包含问题解集的切锥刻画已被仔细研究,而不具有正则性的非线性包含问题解集的切锥刻画,仍然还有很多问题需要仔细研究。我们将探索易于检验的条件和放宽已有结果的限制条件,建立切锥的刻画。
中文关键词: 最小时间函数;切锥;度量正则性;变分不等式;算法
英文摘要: We will discuss subdifferential of optimal value function in minimal time problem and maximal time problem,establish tangent cone formula for the solution set of irregular nonlinear inclusion problem. Subdifferential of optimal value function in minimal time problem is a topic of the sensitivity analysis. Due to its special structure, finer results can be obtained, which does not hold for general optimization problem. Different from those known results, an important assumption of boundedness of set is removed.On maximal time problem, existence of solutions was discussed recently, however, subdifferential of its optimal value function has not been discussed.It is our purpose to discuss this topic in this project.Both minimal time problem and maximal time problem have close link with distance function, so does tangent cone. Tangent cone can be characterized by subderivative of distance function.We will discuss tange cone formula for irregular inclusion problem without assuming the involved set to be localizable. Though 2-regularity is still a basic assumption, we will give easy-to-check sufficient condition for 2-regularity. It seems that 2-regularity for finitely many inequalities is related to an important result in the trust region method, this observation will be useful for us to do this work.
英文关键词: minimal time function;tangent cone;metric regularity;variational inequality;algorithm