项目名称: 统计收敛的测度理论与超滤子收敛
项目编号: No.11426061
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 鲍玲鑫
作者单位: 福建农林大学
项目金额: 3万元
中文摘要: 本项目属泛函分析、几何泛函分析、Banach空间理论和测度论的范畴,旨在研究、解决 或部分解决下列几个问题: (1) 利用几何泛函分析与Banach空间理论给出统计收敛为几乎处处收敛的几何特征; (2) 讨论经典统计收敛是否等价于单一测度收敛; (3) 讨论由超滤子F定义的收敛是否等价于F-几乎处处收敛,进而讨论由单个统计测度定义的收敛是否等价于几乎处处收敛。 本项目将以极端统计测度研究为主线,以几何泛函分析与Banach空间理论的思想、方法和技巧为工具,以致力推进上述三个问题的研究进程为目的,将上述三个问题有机地结合在一起并得到有效的解决。这不仅在理论上和应用上对于上述分支有一定的突破,而且在方法上是一种全新的研究思路。
中文关键词: 统计收敛;滤子;统计测度;几乎处处收敛;端点
英文摘要: Based on functional analysis, geometric functional analysis, Banach space theory and measure theory, the aim of the project is to study, totally or partial solve the following questions: (1) prove the geometric characterizations of statistical convergence to be almost convergece by applying geometric functional analysis and Banach space theory ; (2) discuss whether the classical statistical convergence is equivalent to a single measure convergence; (3) discuss whether the convergence defined by an ultrafilter F is equivalent to F-almost usual convergence, furthermore, discuss that Whether the convergence defined by a single statistical measure is equivalent to almost usual convergence. To approach the above three problems, we will focus on studying extreme statistical measure using geometric functional analysis and Banach space theory, thus, give out a resolution with organic combinations. This brand new approach is not only a breakthrough in theory, but also in practical application.
英文关键词: statistical convergence;filter;statistical measure;almost usual convergence;extreme points