项目名称: 爆破发展方程的控制理论
项目编号: No.11471070
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 林萍
作者单位: 东北师范大学
项目金额: 60万元
中文摘要: 本项目将开展爆破发展方程的若干控制问题的研究。我们拟研究的第一类问题是从几何观点研究常微分方程组的爆破时间最优控制问题;本项目拟研究的第二类问题是爆破抛物型方程支配的控制系统解的渐近行为问题。这些问题有广泛的应用背景。迄今为止,我们尚未从文献中发现对常微分方程组爆破时间最优控制系统的几何理论以及抛物方程爆破点附近解的渐近行为的控制理论做任何研究。这一课题的核心任务是给出常微分方程组爆破时间最优控制系统的几何结构的刻画,以及得到通过施加控制可使爆破抛物方程的解在爆破点附近呈现指定渐近行为的结论。 从而,丰富爆破发展方程的控制理论,并且为解决上述爆破发展方程的控制问题提供有效的方法。
中文关键词: 爆破解;时间最优控制;几何理论;渐近行为
英文摘要: This project will develop the study of some control problems for blowup evolution equations. The first class of problems that we intend to study is blowup time optimal control problems of ordinary differential equations from the point of geometry; The second class of problems that we intend to study is the asymptotic behaviors of solutions to the control systems governed by blowup parabolic equations. These problems have wide application background. So far, we have not find in the literature that the study on the geometric theory of blowup time optimal control problems for ordinary differential equations, and the study on the control theory of the asymptotic behaviors of the solutions in the neighborhood of blowup points for parabolic equations. The core task of this project is to give the characterization of the geometric structure of blowup time optimal control systems for ordinary differential equations, and to obtain the results that the solutions of blowup parabolic equations can present the given asymptotic behaviors in the neighborhood of blowup points by making use of controls. Thus, it can enrich the control theory of blowup evolution equations and can give effective methods in order to solve the above control problems of evolution equations.
英文关键词: blowup solution;time optimal control;geometric theory;asymptotic behavior