项目名称: 一类具有光滑结构的非光滑随机优化的分解方法
项目编号: No.11301347
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 陆媛
作者单位: 沈阳大学
项目金额: 22万元
中文摘要: 很多科学技术领域中都存在着具有光滑结构的非光滑随机优化问题,例如鲁棒控制中的极大极小随机优化,随机矩阵最大特征值函数优化和土木工程领域中的随机半无限规划等。本项目将研究上述三种具有光滑结构的非光滑随机优化的样本均值分解方法。主要研究内容包括:三种非光滑随机优化的光滑结构与光滑性质;SAA子问题精确求解时样本均值分解方法的概率1意义下的收敛性与收敛速度,以及概率的指数收敛率;建立SAA子问题非精确求解的准则,证明在此非精确准则下的样本均值分解方法的概率1意义下的收敛性与收敛速度,以及概率的指数收敛率;以MATLAB语言为工具,编制三种非光滑随机优化的具体有效的算法程序。期望项目的研究可对随机优化的发展起积极促进作用。
中文关键词: 随机优化;分解方法;SAA方法;束方法;
英文摘要: Nonsmooth optimization problems with smooth substructures arise in many field of Science and Technology, such as minimax stochastic optimization in robust control, optimization problem of maximum eigenvalue function of stochastic matrix and stochastic semi-infinite programming in the field of civil engineering. The project focuses on the sample average approximation decomposition method for the three nonsmooth stochastic optimizations which have smooth structures. The main research contents are as follows. Firstly, the convergence and the convergence rate with probability 1,and the exponential convergence rate of probability for the sample average approximation decomposition method as the SAA subproblem is solved exactly, are presented. Secondly, the criterion is established for the SAA subproblem being solved inexactly, and then the convergence and the convergence rate with probability 1, and the exponential convergence rate of probability for the sample average approximation decomposition method under the inexact criterion, are proved. Lastly, the effective procedure for the concrete algorithms are programmed by Matlab language. The anticipated results will play an active promoting role for the development of stochastic optimization.
英文关键词: stochastic optimization;decomposition theory;SAA method;bundle method;