演化、信息和复杂性的数学分析涉及到演化、信息和复杂性的分析。系统或过程的时间演化是科学中的一个中心问题,本文涵盖了广泛的问题,包括扩散过程,神经网络,量子理论和宇宙学。汇集了数学、信息理论、物理和其他科学技术领域的广泛研究,这个新标题提供了对书中涉及的各个研究领域的基本和容易理解的介绍。

我们的书突出了我们学校的一些科学成就,因此有它的名字数学分析的演化,信息和复杂性。为了向读者介绍这门学科,我们从信息理论、神经信息学和数学物理等科学和技术的不同部分及时地介绍了一些基本的、易于理解的主题。书中的每一篇文章都是由一个团队编写的,其中至少代表了两个不同的学科。就这样,数学家和物理学家合作写了一章,物理学家和电气工程师合作,等等。此外,我们还设置了一个规则,即每一个资深科学家都有一个研究生在研究这篇文章。我们希望这一规则能够带来容易理解的贡献。《演化、信息与复杂性的数学分析》不仅代表了我校的规划,成为了本书的标题,也成为了我校组织的指导原则。事实上,我们选择了“演化”、“信息”和“复杂性”这三大支柱作为本书三部分的标题。对于每一个主题,我们都确定了一到两个主题,如表0.1所示。

成为VIP会员查看完整内容
0
36

相关内容

https://www.worldscientific.com/page/pressroom/2018-07-31-01

这本书提供了一个机器学习和数据挖掘领域的数学分析。典型的计算机科学数学课程的数学分析部分省略了这些非常重要的思想和技术,这些思想和技术对于机器学习的专门领域是不可缺少的,以优化为中心,如支持向量机,神经网络,各种类型的回归,特征选择和聚类。本书适用于研究者和研究生,他们将从书中讨论的这些应用领域获益。

数学分析可以被松散地描述为数学的一个领域,其主要对象是研究函数及其关于极限的行为。术语“函数”指的是实参数实函数的广义集合,包括函数、运算符、测度等。在数学分析中,有几个发展良好的领域对机器学习产生了特殊的兴趣:拓扑(具有不同的风格:点集拓扑、组合拓扑和代数拓扑),赋范和内积空间的泛函分析(包括巴拿赫和希尔伯特空间),凸分析,优化,等等。此外,像测量和集成理论这样的学科在统计学中发挥着至关重要的作用,这是机器学习的另一个支柱,在计算机科学家的教育中缺乏。我们的目标是为缩小这一差距做出贡献,这是对研究感兴趣的人的一个严重障碍。机器学习和数据挖掘文献非常广泛,包括各种各样的方法,从非正式的到复杂的数学展示。然而,接近研究主题所需要的必要的数学背景通常以一种简洁和无动机的方式呈现,或者干脆就不存在。本卷机器学习的通常介绍,并提供(通过其应用章节,讨论优化,迭代算法,神经网络,回归,和支持向量机)的数学方面的研究。

成为VIP会员查看完整内容
0
64

这本书的目的是全面概述在算法的数学分析中使用的主要技术。涵盖的材料从经典的数学主题,包括离散数学,基本的真实分析,和组合学,以及从经典的计算机科学主题,包括算法和数据结构。重点是“平均情况”或“概率”分析,但也涵盖了“最坏情况”或“复杂性”分析所需的基本数学工具。我们假设读者对计算机科学和实际分析的基本概念有一定的熟悉。简而言之,读者应该既能写程序,又能证明定理。否则,这本书是自成一体的。

这本书是用来作为算法分析高级课程的教科书。它也可以用于计算机科学家的离散数学课程,因为它涵盖了离散数学的基本技术,以及组合学和重要的离散结构的基本性质,在计算机科学学生熟悉的背景下。传统的做法是在这类课程中有更广泛的覆盖面,但许多教师可能会发现,这里的方法是一种有用的方式,可以让学生参与到大量的材料中。这本书也可以用来向数学和应用数学的学生介绍与算法和数据结构相关的计算机科学原理。

尽管有大量关于算法数学分析的文献,但该领域的学生和研究人员尚未直接获得广泛使用的方法和模型的基本信息。本书旨在解决这种情况,汇集了大量的材料,旨在为读者提供该领域的挑战的欣赏和学习正在开发的先进工具以应对这些挑战所需的背景知识。补充的论文从文献,这本书可以作为基础的介绍性研究生课程的算法分析,或作为一个参考或基础的研究人员在数学或计算机科学谁想要获得这个领域的文献自学。

成为VIP会员查看完整内容
0
38

《量子信息理论》这本书基本上是自成体系的,主要关注构成这门学科基础的基本事实的精确数学公式和证明。它是为研究生和研究人员在数学,计算机科学,理论物理学寻求发展一个全面的理解关键结果,证明技术,和方法,与量子信息和计算理论的广泛研究主题相关。本书对基础数学,包括线性代数,数学分析和概率论有一定的理解。第一章总结了这些必要的数学先决条件,并从这个基础开始,这本书包括清晰和完整的证明它提出的所有结果。接下来的每一章都包含了具有挑战性的练习,旨在帮助读者发展自己的技能,发现关于量子信息理论的证明。

这是一本关于量子信息的数学理论的书,专注于定义、定理和证明的正式介绍。它主要是为对量子信息和计算有一定了解的研究生和研究人员准备的,比如将在本科生或研究生的入门课程中涵盖,或在目前存在的关于该主题的几本书中的一本中。量子信息科学近年来有了爆炸性的发展,特别是在过去的二十年里。对这个问题的全面处理,即使局限于理论方面,也肯定需要一系列的书,而不仅仅是一本书。与这一事实相一致的是,本文所涉及的主题的选择并不打算完全代表该主题。量子纠错和容错,量子算法和复杂性理论,量子密码学,和拓扑量子计算是在量子信息科学的理论分支中发现的许多有趣的和基本的主题,在这本书中没有涵盖。然而,当学习这些主题时,人们很可能会遇到本书中讨论的一些核心数学概念。

https://www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897#fndtn-information

成为VIP会员查看完整内容
0
46

这本书的目的是介绍计算机科学家所需要的一些基本数学知识。读者并不期望自己是数学家,我们希望下面的内容对你有用。

成为VIP会员查看完整内容
0
70

图论和组合优化之间的融合已经导致了理论深刻和实际有用的算法,但目前没有一本书同时涵盖这两个领域。《图论、组合优化和算法手册》是第一本对图论和组合优化进行统一、全面处理的书。

地址:

https://www.routledge.com/Handbook-of-Graph-Theory-Combinatorial-Optimization-and-Algorithms/Thulasiraman-Arumugam-Brandstadt-Nishizeki/p/book/9781584885955

分为11个章节,集中在图论,组合优化和算法问题。本书为读者提供了算法和理论基础:

理解由图结构形成的现象 为图结构的研究开发所需的算法和优化工具 设计和规划导致某些理想行为的图形结构

有来自40多个世界各地的专家的贡献,这本手册配备读者必要的技术和工具,以解决各种应用中的问题。读者可以接触到图论和组合优化的广泛主题的理论和算法基础,使他们能够识别(并因此解决)在不同学科中遇到的问题,如电气、通信、计算机、社会、交通、生物和其他网络。

图论和组合优化的研究在过去的三十年左右经历了爆炸性的增长。电信网络、大规模集成电路设计等技术突飞猛进;网络科学等新领域的出现强调了在社会网络和生物网络中的应用;理论计算机科学的进步都促进了图论、组合优化和相关算法问题的兴趣和知识的爆炸。因此,毫不奇怪,这些学科已经成为工程和计算机科学课程的中心角色。现在有几本关于图论或组合优化的优秀教科书。这些书大致可以分为两类。第一类是处理图论或组合优化中所有基本主题的书籍。这些书是供大四本科生和初学研究生使用的教科书。第二类是对某些特定主题进行深入探讨的书籍。它们适合那些打算从事图论或组合优化研究的学生。由于这些学科已经达到了一定的成熟水平,我们认为需要一本对图论和组合优化提供更广泛和综合处理的书。这样的一本书将帮助学生和研究人员装备自己的技术和工具,将加强他们的能力,看到机会应用图论和组合优化解决他们在应用中遇到的问题。我们多年来在教学和应用图论和组合优化方面的经验使我们相信,虽然工具和技术能提高一个人解决问题的能力,但更广泛地接触它们也能帮助个人看到其他情况下看不到的问题。

成为VIP会员查看完整内容
0
63

本书致力于概率信息测度理论及其在信息源和噪声信道编码定理中的应用。最终的目标是全面发展香农的通信数学理论,但大部分篇幅都用于证明香农编码定理所需的工具和方法。这些工具形成了遍历理论和信息论的共同领域,并包含了随机变量、随机过程和动力系统中的信息的几个定量概念。例如熵、互信息、条件熵、条件信息和相对熵(鉴别、Kullback-Leibler信息),以及这些量的极限标准化版本,如熵率和信息率。在考虑多个随机对象时,除了考虑信息之外,我们还会考虑随机对象之间的距离或变形,即一个随机对象被另一个随机对象表示的准确性。书的大部分与这些量的性质有关,特别是平均信息和扭曲的长期渐近行为,其中两个样本平均数和概率平均数是有兴趣的。

成为VIP会员查看完整内容
0
60

本书是信息论领域中一本简明易懂的教材。主要内容包括:熵、信源、信道容量、率失真、数据压缩与编码理论和复杂度理论等方面的介绍。

本书还对网络信息论和假设检验等进行了介绍,并且以赛马模型为出发点,将对证券市场研究纳入了信息论的框架,从新的视角给投资组合的研究带来了全新的投资理念和研究技巧。

本书适合作为电子工程、统计学以及电信方面的高年级本科生和研究生的信息论基础教程教材,也可供研究人员和专业人士参考。

本书是一本简明易懂的信息论教材。正如爱因斯坦所说:“凡事应该尽可能使其简单到不能再简单为止。''虽然我们没有深人考证过该引语的来源(据说最初是在幸运蛋卷中发现的),但我们自始至终都将这种观点贯穿到本书的写作中。信息论中的确有这样一些关键的思想和技巧,一旦掌握了它们、不仅使信息论的主题简明,而且在处理新问題时提供重要的直觉。本书来自使用了十多年的信息论讲义,原讲义是信息论课程的高年级本科生和一年级研究生两学期用的教材。本书打算作为通信理论.计算机科学和统计学专业学生学习信息论的教材。

信息论中有两个简明要点。第一,熵与互信息这样的特殊量是为了解答基本问题而产生的。例如,熵是随机变量的最小描述复杂度,互信息是度量在噪声背景下的通信速率。另外,我们在以后还会提到,互信息相当于已知边信息条件下财富双倍的增长。第二,回答信息理论问邀的答案具有自然的代数结构。例如,熵具有链式法则,因而,谪和互信息也是相关的。因此,数据压缩和通信中的问题得到广泛的解释。我们都有这样的感受,当研究某个问题时,往往历经大量的代数运算推理得到了结果,但此时没有真正了解问题的全莪,最终是通过反复观察结果,才对整个问题有完整、明确的认识。所以,对一个问题的全面理解,不是靠推理,而是靠对结果的观察。要更具体地说明这一点,物理学中的牛顿三大定律和薛定谔波动方程也许是最合适的例子。谁曾预见过薛定谔波动方程后来会有如此令人敬畏的哲学解释呢?

在本书中,我们常会在着眼于问题之前,先了解一下答案的性质。比如第2章中,我们定义熵、相对熵和互信息,研究它们之间的关系,再对这些关系作一点解释·由此揭示如何融会贯通地使用各式各样的方法解决实际问题。同理,我们顺便探讨热力学第二定律的含义。熵总是增加吗?答案既肯定也否定。这种结果会令专家感兴趣,但初学者或i午认为这是必然的而不会深人考虑。

在实际教学中.教师往往会加人一自己的见解。事实上,寻找无人知道的证明或者有所创新的结果是一件很愉快的事情。如果有人将新的思想和已经证明的内容在课堂上讲解给学生,那么不仅学生会积极反馈“对,对,对六而且会大大地提升教授该课程的乐崆我们正是这样从研究本教材的许多新想法中获得乐趣的。

本书加人的新素材实例包括信息论与博弈之间的关系,马尔可夫链背景下热力学第二定律的普遍性问题,信道容量定理的联合典型性证明,赫夫曼码的竞争最优性,以及关于最大熵谱密度估计的伯格(回定理的证明。科尔莫戈罗夫复杂度这一章也是本书的独到之处。面将费希尔信息,互信息、中心极限定理以及布伦一闵可夫斯基不等式与熵幂不等式联系在一起,也是我们引以为豪之处。令我们感到惊讶的是.关于行列式不等式的许多经典结论,当利用信息论不等式后会很容易得到证明。

自从香农的奠基性论文面世以来,尽管信息论已有了相当大的发展,但我们还是要努力强调它的连贯性。虽然香农创立信息论时受到通信理论中的问题启发,然而我们认为信息论是一门独立的学科,可应用于通信理论和统计学中。我们将信息论作为一个学科领域从通信理论、概率论和统计学的背景中独立出来因为明显不可能从这些学科中获得难以理解的信息概念。由于本书中绝大多数结论以定理和证明的形式给出,所以,我们期望通过对这些定理的巧妙证明能说明这些结论的完美性。一般来讲,我们在介绍问题之前先描述回题的解的性质,而这些很有的性质会使接下来的证明顺理成章。

使用不等式串、中间不加任何文字、最后直接加以解释,是我们在表述方式上的一项创新希望读者学习我们所给的证明过程达到一定数量时,在没有任何解释的情况下就能理解其中的大部分步,并自己给出所需的解释这些不等式串好比模拟到试题,读者可以通过它们确认自己是否已掌握证明那些重要定理的必备知识。这些证明过程的自然流程是如此引人注目,以至于导致我们轻视了写作技巧中的某条重要原则。由于没有多余的话,因而突出了思路的逻辑性与主題思想u我们希望当读者阅读完本书后,能够与我们共同分亨我们所推崇的,具有优美、简洁和自然风格的信息论。

本书广泛使用弱的典型序列的方法,此概念可以追溯到香农1948年的创造性工作,而它真正得到发展是在20世纪70年代初期。其中的主要思想就是所谓的渐近均分性(AEP),或许可以粗略地说成“几乎一切事情都是等可能的"

第2章阐述了熵、相对熵和互信息之同的基本代数关系。渐近均分性是第3章重中之重的内容,这也使我们将随机过程和数据压缩的熵率分别放在第4章和第5章中论述。第6章介绍博弈,研究了数据压缩的对偶性和财富的增长率。可作为对信息论进行理性思考基础的科尔莫戈罗夫复杂度,拥有着巨大的成果,放在第14章中论述。我们的目标是寻找一个通用的最矩描述,而不是平均意义下的次佳描述。的确存在这样的普遍性概念用来刻画一个对象的复杂度。该章也论述了神奇数0,揭示数学上的不少奥秘,是图灵机停止运转概率的推广。第7章论述信道容量定理。第8章叙述微分熵的必需知识,它们是将早期容量定理推广到连续噪声信道的基础。基本的高斯信道容量问题在第9章中论述。第il章阐述信息论和统计学之间的关系,20世纪年代初期库尔贝克首次对此进行了研究,此后相对被忽视。由于率失真理论比无噪声数据压缩理论需要更多的背景知识,因而将其放置在正文中比较靠后的第10章。

网络信息理论是个大的主题,安排在第巧章,主要研究的是噪声和干扰存在情形下的同时可达的信息流。有许多新的思想在网络信息理论中开始活跃起来,其主要新要素有干扰和反馈第16章讲述股票市场,这是第6章所讨论的博弈的推广,也再次表明了信息论和博弈之间的紧密联系。第17章讲述信息论中的不等式,我们借此一隅把散布于全书中的有趣不等式重新收拢在一个新的框架中,再加上一些关于随机抽取子集熵率的有趣新不等式。集合和的体积的布伦一闵可夫斯基不等式,独立随机变量之和的有效方差的熵幂不等式以及费希尔信息不等式之间的美妙关系也将在此章中得到详尽的阐述。

本书力求推理严密,因此对数学的要求相当高·要求读者至少学过一学期的概率论课程且有扎实的数学背景,大致为本科高年级或研究生一年级水平。尽管如此,我们还是努力避免使用测度论。因为了解它只对第16章中的遍历过程的AEP的证明过程起到简化作用。这符合我们的观点,那就是信息论基础与技巧不同,后者才需要将所有推广都写进去。

本书的主体是第2,3,4,5,7,8,9,10,11和巧章,它们自成体系,读懂了它们就可以对信息论有很好的理解。但在我们看来,第14章的科尔莫戈罗夫复杂度是深人理解信息论所需的必备知识。余下的几章,从博弈到不等式.目的是使主题更加连贯和完美。

成为VIP会员查看完整内容
0
108

越来越多来自不同领域的计算机科学家使用离散数学结构来解释概念和问题。在教学经验的基础上,作者提供了一个容易理解的文本,强调了离散数学的基础及其高级课题。这篇文章展示了如何用清晰的数学语言表达精确的思想。学生发现离散数学在描述计算机科学结构和解决问题方面的重要性。他们还学习如何掌握离散数学将帮助他们发展重要的推理技能,这些技能将在他们的职业生涯中继续发挥作用。

成为VIP会员查看完整内容
0
77

在复杂的以人为中心的系统中,每天的决策都具有决策相关信息不完全的特点。现有决策理论的主要问题是,它们没有能力处理概率和事件不精确的情况。在这本书中,我们描述了一个新的理论的决策与不完全的信息。其目的是将决策分析和经济行为的基础从领域二价逻辑转向领域模糊逻辑和Z约束,从行为决策的外部建模转向组合状态的框架。

这本书将有助于在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学的专业人员,学者,经理和研究生。

读者:专业人士,学者,管理者和研究生在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学。

成为VIP会员查看完整内容
0
157

近几十年来,数据缺失的问题引起了广泛关注。这个新版本由两个公认的专家在这个问题上提供了一个最新的实用方法处理缺失数据问题。将理论与应用相结合,作者Roderick Little和Donald Rubin回顾了该主题的历史方法,并描述了缺失值的多元分析的简单方法。然后,他们提供了一个连贯的理论来分析基于概率的问题,这些概率来自于数据的统计模型和缺失数据的机制,然后他们将该理论应用到广泛的重要缺失数据的问题。

统计分析与缺失的数据,第三版开始给读者介绍缺失数据和解决它的方法。它查看创建丢失数据的模式和机制,以及丢失数据的分类。然后,在讨论完整案例分析和可用案例分析(包括加权方法)之前,对实验中缺失的数据进行检查。新版本扩大了它的覆盖面,包括最近的工作,如不响应抽样调查,因果推理,诊断方法,灵敏度分析,在许多其他主题。

  • 一个更新的“经典”由著名的权威写的主题
  • 超过150个练习(包括许多新的)
  • 介绍了最近的一些重要方法的研究工作,如多重归算、加权的稳健替代方法和贝叶斯方法
  • 根据过去的学生反馈和课堂经验修改以前的主题
  • 包含一个更新和扩展的书目

2017年,国际统计研究所(International Statistical Institute)将卡尔·皮尔森奖(Karl Pearson Prize)授予了这两位作者,以表彰他们对统计理论、方法或应用产生深远影响的研究贡献。

第三版统计分析缺失的数据,是一个理想的教科书,为本科高年级和/或刚开始研究生水平的学科学生。它也是一个优秀的信息来源,为应用统计学家和在政府行业的从业人员提供参考。

成为VIP会员查看完整内容
0
69
小贴士
相关主题
相关VIP内容
专知会员服务
38+阅读 · 8月30日
专知会员服务
46+阅读 · 8月4日
专知会员服务
70+阅读 · 7月27日
专知会员服务
60+阅读 · 3月23日
专知会员服务
108+阅读 · 3月22日
专知会员服务
77+阅读 · 2020年8月31日
专知会员服务
157+阅读 · 2020年6月24日
缺失数据统计分析,第三版,462页pdf
专知会员服务
69+阅读 · 2020年2月28日
相关资讯
最新《图理论》笔记书,98页pdf
专知
21+阅读 · 2020年12月27日
【干货书】计算机科学离散数学,627页pdf
专知
21+阅读 · 2020年8月31日
综述 | 异质信息网络分析与应用综述
专知
12+阅读 · 2020年8月8日
缺失数据统计分析,第三版,462页pdf
专知
10+阅读 · 2020年2月28日
资源 | 《概率机器人》高清中文PDF
AI科技评论
8+阅读 · 2019年2月15日
【工业智能】电网故障诊断的智能技术
产业智能官
17+阅读 · 2018年5月28日
【社交网络】一文读懂社交网络分析
产业智能官
9+阅读 · 2017年10月14日
相关论文
Cristian-Paul Bara,Sky CH-Wang,Joyce Chai
0+阅读 · 9月13日
Cesar Borisovich Pronin,Andrey Vladimirovich Ostroukh
0+阅读 · 9月3日
Thomas Hubert,Julian Schrittwieser,Ioannis Antonoglou,Mohammadamin Barekatain,Simon Schmitt,David Silver
4+阅读 · 4月13日
Progressive Network Grafting for Few-Shot Knowledge Distillation
Chengchao Shen,Xinchao Wang,Youtan Yin,Jie Song,Sihui Luo,Mingli Song
4+阅读 · 2020年12月9日
Yantao Shen,Yuanjun Xiong,Wei Xia,Stefano Soatto
5+阅读 · 2020年3月26日
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
5+阅读 · 2020年3月9日
Dynamic Graph Attention for Referring Expression Comprehension
Sibei Yang,Guanbin Li,Yizhou Yu
4+阅读 · 2019年9月18日
Alexei Baevski,Sergey Edunov,Yinhan Liu,Luke Zettlemoyer,Michael Auli
6+阅读 · 2019年3月19日
Khuong Vo,Dang Pham,Mao Nguyen,Trung Mai,Tho Quan
3+阅读 · 2018年6月22日
Top