清华&南开出品最新视觉注意力机制Attention综述

2021 年 11 月 22 日 极市平台
↑ 点击 蓝字  关注极市平台

来源丨量子位
编辑丨极市平台

极市导读

 

清华大学计图团队和南开大学程明明教授团队、卡迪夫大学Ralph R. Martin教授合作,在ArXiv上发布关于计算机视觉中的注意力机制的综述文章。该综述系统地介绍了注意力机制在计算机视觉领域中相关工作 >>加入极市CV技术交流群,走在计算机视觉的最前沿

清华计图胡事民团队的这篇注意力机制的综述火了!

在上周的arXiv上,这是最热的一篇论文:

推特以及GitHub上也有不低的热度:

而这篇论文引用近200篇内容,对计算机视觉领域中的各种注意力机制进行了全面回顾。

在大量调查之后,论文将注意力机制分为多个类别,GitHub还给出了各类别下提到内容的PDF下载文件:

现在,就来一起看看这篇论文。

文章主要内容

论文首先将基于注意力的模型在计算机视觉领域中的发展历程大致归为了四个阶段:

  1. 将深度神经网络与注意力机制相结合,代表性方法为RAM

  2. 明确预测判别性输入特征,代表性方法为STN

  3. 隐性且自适应地预测潜在的关键特征,代表方法为SENet

  4. 自注意力机制

同时,注意力机制也被分为了通道注意、空间注意、时间注意、分支注意,以及两个混合类别:

针对不同类别,研究团队给出了其代表性方法和发展背景:

通道注意力(Channel Attention)

在深度神经网络中,不同特征图的不同通道常代表不同对象。

而通道注意力作为一个对象选择过程,可以自适应地重新校准每个通道的权重,从而决定关注什么。

因此,按照类别和出版日期将代表性通道关注机制进行分类,应用范围有分类(Cls)、语义分割(SSeg)、实例分割(ISeg)、风格转换(ST)、动作识别(Action)。

其中,(A)代表Channel-wise product,(I)强调重要通道,(II)捕捉全局信息。

空间注意力(Spatial Attention)

空间注意力可以被看作是一种自适应的空间区域选择机制。

其应用范围比通道注意力多出了精细分类(FGCls)和图像字幕(ICap)。

时间注意力(Temporal Attention)

时间注意力可以被看作是一种动态的时间选择机制,决定了何时进行注意,因此通常用于视频处理。

分支注意力(Branch Attention)

分支注意可以被看作是一种动态的分支选择机制,通过多分支结构决定去注意什么。

通道空间注意力(Channel & Spatial Attention)

通道和空间结合的注意力机制可以自适应地选择重要的对象和区域,由残差注意力(Residual Attention)网络开创了这一内容。

在残差注意力之后,为了有效利用全局信息,后来的工作又相继引入全局平均池化(Global Average Pooling),引入自注意力机制等内容。

时空注意力(Spatial & Temporal Attention)

时空注意力机制可以自适应地选择重要区域和关键帧。

最后,作者也提出了注意力机制在未来的一些研究方向:

  • 探索注意力机制的必要和充分条件

  • 是否可以有一个通用的注意块,可以根据具体的任务在各类注意力机制之间进行选择

  • 开发可定性和可解释的注意力模型

  • 注意力机制可以产生稀疏的激活,这促使我们去探索哪种架构可以更好地模拟人类的视觉系统

  • 进一步探索基于注意力的预训练模型

  • 为注意力模型研究新的优化方法

  • 找到简单、高效、有效的基于注意力的模型,使其可以广泛部署

关于作者

这篇论文来自清华大学计算机系胡事民团队。

胡事民为清华大学计算机系教授,教育部长江学者特聘教授,曾经和现任IEEE、Elsevier、Springer等多个期刊的主编、副主编和编委。同时,他也是清华“计图”框架团队的负责人,这是首个由中国高校开源的深度学习框架。

文章一作为胡事民教授的博士生国孟昊,现就读于清华大学计算机系,也是清华计图团队的一员。

各类资源汇总链接:
https://github.com/MenghaoGuo/Awesome-Vision-Attentions

论文地址:
https://arXiv.org/abs/2111.07624

如果觉得有用,就请分享到朋友圈吧!

△点击卡片关注极市平台,获取 最新CV干货

公众号后台回复“transformer”获取最新Transformer综述论文下载~


极市干货
课程/比赛: 珠港澳人工智能算法大赛 保姆级零基础人工智能教程
算法trick 目标检测比赛中的tricks集锦 从39个kaggle竞赛中总结出来的图像分割的Tips和Tricks
技术综述: 一文弄懂各种loss function 工业图像异常检测最新研究总结(2019-2020)


CV技术社群邀请函 #

△长按添加极市小助手
添加极市小助手微信(ID : cvmart4)

备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)


即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群


每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~



觉得有用麻烦给个在看啦~   
登录查看更多
0

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
2021->2022必看的十篇「深度学习领域综述」论文
专知会员服务
112+阅读 · 2022年1月1日
专知会员服务
60+阅读 · 2021年2月22日
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
专知会员服务
57+阅读 · 2020年12月6日
【文本分类大综述:从浅层到深度学习,35页pdf】
专知会员服务
187+阅读 · 2020年8月6日
注意力机制模型最新综述
专知会员服务
266+阅读 · 2019年10月20日
深度学习中Attention机制的“前世今生”
极市平台
1+阅读 · 2021年10月24日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
自注意力机制在计算机视觉中的应用
GAN生成式对抗网络
19+阅读 · 2018年12月20日
干货 | NLP中的self-attention【自-注意力】机制
机器学习算法与Python学习
12+阅读 · 2018年4月11日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2019年4月5日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关VIP内容
2021->2022必看的十篇「深度学习领域综述」论文
专知会员服务
112+阅读 · 2022年1月1日
专知会员服务
60+阅读 · 2021年2月22日
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
专知会员服务
57+阅读 · 2020年12月6日
【文本分类大综述:从浅层到深度学习,35页pdf】
专知会员服务
187+阅读 · 2020年8月6日
注意力机制模型最新综述
专知会员服务
266+阅读 · 2019年10月20日
相关资讯
深度学习中Attention机制的“前世今生”
极市平台
1+阅读 · 2021年10月24日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
自注意力机制在计算机视觉中的应用
GAN生成式对抗网络
19+阅读 · 2018年12月20日
干货 | NLP中的self-attention【自-注意力】机制
机器学习算法与Python学习
12+阅读 · 2018年4月11日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
相关论文
Arxiv
3+阅读 · 2022年4月19日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2019年4月5日
Arxiv
11+阅读 · 2018年5月21日
Top
微信扫码咨询专知VIP会员