Trajectory prediction is an important task in autonomous driving. State-of-the-art trajectory prediction models often use attention mechanisms to model the interaction between agents. In this paper, we show that the attention information from such models can also be used to measure the importance of each agent with respect to the ego vehicle's future planned trajectory. Our experiment results on the nuPlans dataset show that our method can effectively find and rank surrounding agents by their impact on the ego's plan.
翻译:轨迹预测是自主驱动的一项重要任务。 最先进的轨迹预测模型经常使用关注机制来模拟代理人之间的互动。 在本文中,我们表明,从这些模型获得的注意信息也可以用来衡量每个代理人对于自我载体未来计划轨迹的重要性。 我们的NuPlans数据集实验结果表明,我们的方法可以通过对自我载体计划的影响来有效地发现周围的代理人并对其进行排名。