本工作由京东探索研究院和西北工业大学联合完成,已经被CVPR2022接收。在本文中我们提出了一个基于频域信息注入的后门攻击方法(Frequency-Injection based Backdoor Attack,FIBA)。具体来说,我们设计了一个频域触发器,通过线性组合两幅图像的振幅谱图,将触发器图像的低频信息注入有毒图像。由于 FIBA 保留了受污染图像像素的语义,因此既可以对分类模型进行攻击,也可以对密集预测模型进行攻击。我们在医学图像领域的三个基准上进行了实验(用于皮肤病变分类的 ISIC-2019数据集,用于肾脏肿瘤分割的 KiTS-19 数据集,以及用于内镜伪像检测的 EAD-2019 数据集),以验证 FIBA 攻击医学图像分析模型的有效性以及其在绕过后门防御方面的优势。

近年来,人工智能系统的安全性引起了越来越多的研究关注,特别是在医学成像领域。为了开发安全的医学图像分析(Medical Image Analysis,MIA)系统,对可能存在的后门攻击(backdoor attack, BAs) 的研究不可缺少。后门攻击的目标是在模型训练时嵌入一个隐藏后门,在测试阶段对于良性的测试样本后门不激活, 模型表现正常;然而,一旦后门被有毒样本中的触发器激活,预测结果将会改变为攻击者预期的特定目标标签。

然而,由于医学图像成像模式(如x线、CT和MRI图像)和分析任务(如分类、检测和分割)的多样性,设计一种适用于各种MIA系统的统一的后门攻击方法颇具挑战性。现有的后门攻击方法大多是针对自然图像分类模型进行攻击,将时域触发器直接应用于训练图像[1,2,3],不可避免地会破坏受污染图像部分像素的语义(如图1所示),导致对密集预测模型的攻击失败。

视觉心理物理学[4,5]证明,视觉皮层的模型是基于根据傅里叶频谱(振幅和相位)进行的图像分解。其中振幅谱图可以捕捉低层次的分布,而相位谱可以捕捉高层次的语义信息[6]。此外,据观察,振幅谱图的变化并不对高层次语义的感知没有显著影响[6,7]. 基于这些富有洞察力和启发性的观察,我们提出了一种新的隐形频率注入后门攻击(FIBA)范式,其中触发器是在图像的振幅谱图中注入,而相位谱图的信息则保持不变。由于所提出的触发器被注入到振幅谱图中而不影响相位谱图,所以FIBA通过保留空间布局,保护了中毒像素的语义,因此能够攻击分类和密集预测模型。

成为VIP会员查看完整内容
20

相关内容

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。它包含以下两个相对独立的研究方向:医学成像系统(medical imaging system)和医学图像处理(medical image processing)。前者是指图像行成的过程,包括对成像机理、成像设备、成像系统分析等问题的研究;后者是指对已经获得的图像作进一步的处理,其目的是或者是使原来不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等等。
【CVPR2022】提示分布学习
专知会员服务
31+阅读 · 2022年5月17日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
21+阅读 · 2021年5月1日
【CVPR2021】多实例主动学习目标检测
专知会员服务
43+阅读 · 2021年4月18日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
38+阅读 · 2021年4月9日
【CVPR2021】跨模态检索的概率嵌入
专知会员服务
20+阅读 · 2021年3月2日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
14+阅读 · 2021年1月31日
【中科院自动化所】视觉对抗样本生成技术概述
专知会员服务
37+阅读 · 2020年4月15日
对抗训练理论分析:自适应步长快速对抗训练
PaperWeekly
2+阅读 · 2022年6月23日
AAAI 2022 | 基于强化学习的视频弹幕攻击
PaperWeekly
1+阅读 · 2022年1月11日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
深度学习下的医学图像分析(四)
AI研习社
19+阅读 · 2017年7月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月23日
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关VIP内容
【CVPR2022】提示分布学习
专知会员服务
31+阅读 · 2022年5月17日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
21+阅读 · 2021年5月1日
【CVPR2021】多实例主动学习目标检测
专知会员服务
43+阅读 · 2021年4月18日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
38+阅读 · 2021年4月9日
【CVPR2021】跨模态检索的概率嵌入
专知会员服务
20+阅读 · 2021年3月2日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
14+阅读 · 2021年1月31日
【中科院自动化所】视觉对抗样本生成技术概述
专知会员服务
37+阅读 · 2020年4月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员