Summary: Accurate phenotype prediction from genomic sequences is a highly coveted task in biological and medical research. While machine-learning holds the key to accurate prediction in a variety of fields, the complexity of biological data can render many methodologies inapplicable. We introduce BioKlustering, a user-friendly open-source and publicly available web app for unsupervised and semi-supervised learning specialized for cases when sequence alignment and/or experimental phenotyping of all classes are not possible. Among its main advantages, BioKlustering 1) allows for maximally imbalanced settings of partially observed labels including cases when only one class is observed, which is currently prohibited in most semi-supervised methods, 2) takes unaligned sequences as input and thus, allows learning for widely diverse sequences (impossible to align) such as virus and bacteria, 3) is easy to use for anyone with little or no programming expertise, and 4) works well with small sample sizes. %This section should summarize the purpose/novel features of the program in one or two sentences. Availability and Implementation: BioKlustering (https://bioklustering.wid.wisc.edu) is a freely available web app implemented with Django, a Python-based framework, with all major browsers supported. The web app does not need any installation, and it is publicly available and open-source (https://github.com/solislemuslab/bioklustering).


翻译:摘要:基因组序列中精密的线性类型预测是生物学和医学研究中一项高度令人羡慕的任务。虽然机器学习是准确预测各个领域的关键,但生物数据的复杂性可能使许多方法不适用。我们引入了BioKlustering,这是一个方便用户的开放源码,并公开提供网络应用程序,用于所有类别的序列对齐和(或)实验性口味无法做到的不监督和半监督的学习。它的主要优点之一是,BioKlustering 1)允许在只观察到一个类的情况下,包括只看到一个案例时,部分观察到的标签设置极不平衡。目前大多数半监督方法都禁止这样做,但生物数据的复杂性使许多方法无法适用。我们引入了BioKlustering,因此,可以学习诸如病毒和细菌等广泛多样的序列(可能统一),3)对于没有多少或没有方案编制专门知识的任何人来说很容易使用,以及4)与小型样本大小一起工作。% 本节应在一或两句话中总结程序的目的/鼻子特征。 版本和执行:BioKluskwas brustering (http://dlivestowaster) a slifliflifliflivesto) a suplifusto

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员