论文题目: Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation

摘要: 模型无关元学习的目标是从相似的任务中获取元学习参数,以适应分布相同但梯度更新较少的新任务。由于模型选择的灵活性,这些框架在诸如小样本图像分类和增强学习等多个领域表现出了良好的性能。然而,此类框架的一个重要限制是,它们寻求在整个任务分布中共享的公共初始化,这极大地限制了它们能够学习的任务分布的多样性。在本文中,我们增强了MAML的能力,以识别从多模式任务分布中采样的任务模式,并通过梯度更新快速适应。具体来说,我们提出了一个多模态MAML (MMAML)框架,该框架能够根据所识别的模式调整其元学习先验参数,从而实现更高效的快速适应。我们在一组不同的小样本学习任务上对所提出的模型进行评估,包括回归、图像分类和强化学习。结果不仅证明了我们的模型在调整元学习先验以响应任务特征方面的有效性,而且表明了多模态分布的训练比单模态训练有更好的效果。

论文作者: Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim

成为VIP会员查看完整内容
62

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
专知会员服务
88+阅读 · 2020年1月20日
ICML2019《元学习》教程与必读论文列表
专知
42+阅读 · 2019年6月16日
元学习(Meta-Learning) 综述及五篇顶会论文推荐
Meta-Learning 元学习:学会快速学习
GAN生成式对抗网络
20+阅读 · 2018年12月8日
OpenAI提出Reptile:可扩展的元学习算法
深度学习世界
7+阅读 · 2018年3月9日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
4+阅读 · 2019年4月3日
Arxiv
136+阅读 · 2018年10月8日
VIP会员
相关资讯
微信扫码咨询专知VIP会员