课程介绍

在人工智能、统计学、计算机系统、计算机视觉、自然语言处理和计算生物学等许多领域中的问题,都可以被视为从局部信息中寻找一致的全局结论。概率图模型框架为这些普遍问题提供了统一的视角解决方案,支持在具有大量属性和庞大数据集的问题中进行有效的推理、决策和学习。本研究生课程将为您运用图模型到复杂的问题和解决图模型的核心研究课题提供坚实的基础。

课程大纲

  • 模块1 - 简介,表示形式和精确推断
  • 模块2 - 近似推断
  • 模块3 - 深度学习和生成模型
  • 模块4 - 通过GM中的推理进行强化学习和控制
  • 模块5 - 非参数方法
  • 模块6 - 模块化和可扩展的算法和系统

讲师:邢波

讲师简介

邢波,卡耐基梅隆大学教授,曾于2014年担任国际机器学习大会(ICML)主席。主要研究兴趣集中在机器学习和统计学习方法论及理论的发展,和大规模计算系统和架构的开发。他创办了Petuum 公司,这是一家专注于人工智能和机器学习的解决方案研发的公司,腾讯曾投资了这家公司。

个人主页

http://www.cs.cmu.edu/~epxing/

成为VIP会员查看完整内容
0
48

相关内容

卡耐基梅隆大学(Carnegie Mellon University)坐落在宾夕法尼亚州的匹兹堡,是一所享誉世界的私立顶级研究型大学,学校面积不大,学科门类不多,但在其所设立的几乎所有专业都居于世界领先水平。卡内基梅隆大学享誉全国的认知心理学、管理和公共关系学、写作和修辞学、应用历史学、哲学和生物科学专业。它的计算机、机器人科学、理学、美术及工业管理都是举世公认的一流专业。

【导读】卡内基梅隆大学(CMU),在2020年春季学习继续开设了由Eric P. Xing教授执教的经典课程《Probabilistic Graphical Models》(概率图模型)。这门课程从2005年开设至今,已经有十多个年头了。它影响了一代又一代计算机学者,为学界培养了大量机器学习人才。直到如今,概率图模型仍然是机器学习领域非常火热的方向,感兴趣的同学不要错过。

课程简介

在人工智能、统计学、计算机系统、计算机视觉、自然语言处理和计算生物学等许多其他领域中,许多问题都可以看作是从局部信息中寻找一致的全局结论。概率图模型框架为这一范围广泛的问题提供了统一的视角,支持对具有大量属性和庞大数据集的问题进行有效的推理、决策和学习。无论是应用图模型来解决复杂问题还是作为将图模型作为核心研究课题,本课程都能为你打下坚实基础。

邢波 Eric P. Xing 教授

Eric P.Xing是卡内基梅隆大学(Carnegie Mellon University)计算机科学教授,是2018年世界经济论坛(World Economic Forum)技术先驱公司Petuum Inc.的创始人、首席执行官和首席科学家,该公司为广泛和通用的工业人工智能应用构建标准化人工智能开发平台和操作系统。美国新泽西州立大学分子生物学与生物化学博士;美国加州大学伯克利分校(UC,Berkeley)计算机科学博士。主要研究兴趣集中在机器学习和统计学习方法论及理论的发展,和大规模计算系统和架构的开发,以解决在复杂系统中的高维、多峰和动态的潜在世界中的自动化学习、推理以及决策问题。目前或曾经担任《美国统计协会期刊》(JASA)、《应用统计年鉴》(AOAS)、《IEEE模式分析与机器智能学报》(PAMI)和《PLoS计算生物学杂志》(the PLoS JournalofComputational Biology)的副主编,《机器学习杂志》(MLJ)和《机器学习研究杂志》(JMLR)的执行主编,还是美国国防部高级研究计划署(DARPA)信息科学与技术顾问组成员,曾获得美国国家科学基金会(NSF)事业奖、Alfred P. Sloan学者奖、美国空军青年学者奖以及IBM开放协作研究学者奖等,以及多次论文奖。曾于2014年担任国际机器学习大会(ICML)主席。

http://www.cs.cmu.edu/~epxing/

课程信息:

成为VIP会员查看完整内容
0
76

【导读】2020新年伊始,多伦多大学Amir-massoud Farahmand和Emad A. M. Andrews博士开设了机器学习导论课程,介绍了机器学习的主要概念和思想,并概述了许多常用的机器学习算法。它还可以作为更高级的ML课程的基础。

课程地址:

https://amfarahmand.github.io/csc311/

机器学习(ML)是一组技术,它允许计算机从数据和经验中学习,而不需要人工指定所需的行为。ML在人工智能作为一个学术领域和工业领域都变得越来越重要。本课程介绍了机器学习的主要概念和思想,并概述了许多常用的机器学习算法。它还可以作为更高级的ML课程的基础。

本课程结束时,学生将学习(大致分类)

  • 机器学习问题:监督(回归和分类),非监督(聚类,降维),强化学习

  • 模型:线性和非线性(基扩展和神经网络)

  • 损失函数:平方损失、交叉熵、铰链、指数等。

  • Regularizers: l1和l2

  • 概率观点:最大似然估计,最大后验,贝叶斯推理

  • 偏差和方差的权衡

  • 集成方法:Bagging 和 Boosting

  • ML中的优化技术: 梯度下降法和随机梯度下降法

课程目录:

参考资料:

(ESL) Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning, 2009.

(PRML) Christopher M. Bishop, Pattern Recognition and Machine Learning, 2006.

(RL) Richard S. Sutton and Andrew G. Barto Reinforcement Learning: An Introduction, 2018.

(DL) Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016), Deep Learning

(MLPP) Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, 2013.

(ISL) Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, Introduction to Statistical Learning, 2017.

() Shai Shalev-Shwartz and Shai Ben-David Understanding Machine Learning: From Theory to Algorithms, 2014.

(ITIL) David MacKay, Information Theory, Inference, and Learning Algorithms, 2003.

成为VIP会员查看完整内容
0
37

普林斯顿大学在19年春季学期,开设了COS 598D《机器学习优化》课程,课程主要介绍机器学习中出现的优化问题,以及解决这些问题的有效算法。前不久,课程教授Elad Hazan将其精心准备的课程讲义开放了出来,讲义内容详实循序渐进,非常适合想要入门机器学习的同学阅读。

COS 598D:Optimization for Machine Learning(机器学习优化)是普林斯顿大学在19年春季学期开设的课程。课程主要介绍机器学习中出现的优化问题,以及解决这些问题的有效算法。

课程内容涵盖:

  • Introduction to convex analysis
  • first-order methods, convergence analysis
  • generalization and regret minimization
  • regularization
  • gradient descent++:
    • acceleration
    • variance reduction
    • adaptive preconditioning
  • 2nd order methods in linear time
  • projection-free methods and the Frank-Wolfe algorithm
  • zero-order optimization, convex bandit optimization
  • optimization for deep learning: large scale non-convex optimization
成为VIP会员查看完整内容
0
57

主题: Introduction to Machine Learning

课程简介: 机器学习是指通过经验自动提高性能的计算机程序(例如,学习识别人脸、推荐音乐和电影以及驱动自主机器人的程序)。本课程从不同的角度介绍机器学习的理论和实用算法。主题包括贝叶斯网络、决策树学习、支持向量机、统计学习方法、无监督学习和强化学习。本课程涵盖理论概念,例如归纳偏差、PAC学习框架、贝叶斯学习方法、基于边际的学习和Occam的剃刀。编程作业包括各种学习算法的实际操作实验。这门课程的目的是让一个研究生在方法论,技术,数学和算法方面有一个彻底的基础,目前需要的人谁做的机器学习的研究。

邀请嘉宾: Hal Daumé III,纽约市微软研究院的研究员,是机器学习小组的一员;他也是马里兰大学的副教授。他主要从事自然语言处理和机器学习。

Matt Gormley,卡内基梅隆大学计算机科学学院机器学习部(ML)助教。

Roni Rosenfeld,卡内基梅隆大学计算机学院机器学习系教授兼主任,个人主页:https://www.cs.cmu.edu/~roni/。等

成为VIP会员查看完整内容
0
40
小贴士
相关论文
Dan Hendrycks,Xiaoyuan Liu,Eric Wallace,Adam Dziedzic,Rishabh Krishnan,Dawn Song
5+阅读 · 2020年4月13日
Advances in Natural Language Question Answering: A Review
K. S. D. Ishwari,A. K. R. R. Aneeze,S. Sudheesan,H. J. D. A. Karunaratne,A. Nugaliyadde,Y. Mallawarrachchi
4+阅读 · 2019年4月10日
A General and Adaptive Robust Loss Function
Jonathan T. Barron
7+阅读 · 2018年11月5日
Jingkang Wang,Yang Liu,Bo Li
3+阅读 · 2018年10月5日
Training behavior of deep neural network in frequency domain
Zhi-Qin J. Xu,Yaoyu Zhang,Yanyang Xiao
4+阅读 · 2018年8月21日
Joachim D. Curtó,Irene C. Zarza,Fernando De La Torre,Irwin King,Michael R. Lyu
4+阅读 · 2018年5月10日
Henggang Cui,Gregory R. Ganger,Phillip B. Gibbons
3+阅读 · 2018年3月20日
Tong Yu,Branislav Kveton,Zheng Wen,Ole J. Mengshoel,Hung Bui
4+阅读 · 2018年2月16日
Michael Opitz,Georg Waltner,Horst Possegger,Horst Bischof
18+阅读 · 2018年1月15日
Ilias Diakonikolas,Gautam Kamath,Daniel M. Kane,Jerry Li,Ankur Moitra,Alistair Stewart
3+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员