CMU 邢波教授2019春季《概率图模型》课程开讲,带你学习PGM(含讲义PPT及视频)

2019 年 1 月 25 日 专知

【导读】如何在不确定性情况下进行推理,是很多应用面临的问题。卡内基梅隆大学邢波老师一直从事概率图模型的研究,最近他新设2019年新的《概率图模型》(Probabilistic Graphical Models)课程,是系统性学习PGM 非常好的资料。

https://sailinglab.github.io/pgm-spring-2019/


授课老师




邢波(Eric Xing)是卡耐基梅隆大学教授,曾于2014年担任国际机器学习大会(ICML)主席。主要研究兴趣集中在机器学习和统计学习方法论及理论的发展,和大规模计算系统和架构的开发。他创办了Petuum 公司,这是一家专注于人工智能和机器学习的解决方案研发的公司,腾讯曾投资了这家公司。

个人主页:  http://www.cs.cmu.edu/~epxing/


概率图模型


课程简介

在人工智能、统计学、计算机系统、计算机视觉、自然语言处理和计算生物学等许多领域中的问题,都可以被视为从局部信息中寻找一致的全局结论。概率图模型框架为这些普遍问题提供了统一的视角解决方案,支持在具有大量属性和庞大数据集的问题中进行有效的推理、决策和学习。本研究生课程将为您运用图模型到复杂的问题和解决图模型的核心研究课题提供坚实的基础

课程目录

Module 1: Introduction, Representation, and Exact Inference

  • Introduction to GM 

  • Representation: Directed GMs (BNs) 

  • Representation: Undirected GMs (MRFs) 

  • Exact inference 
    - Elimination 
    - Message passing 
    - Sum product algorith

  • Parameter learning in fully observable Bayesian Networks 
    - Generalized Linear Models (GLIMs) 
    - Maximum Likelihood Estimation (MLE) 
    - Markov Models

  • Parameter Learning of partially observed BN 
    - Mixture models 
    - Hidden Markov Models (HMMs) 
    - The EM algorithm 

  • Parameter learning in fully observable Markov networks (CRF) 

  • Causal discovery and inference 

  • Gaussian graphical models, Ising model, Modeling networks 

  • Sequential models 
    - Discrete Hidden State (HMM vs. CRF) 
    - Continuous Hidden State (Kalman Filter) 

Module 2: Approximate Inference

  • Approximate Inference: Mean Field (MF) and loopy Belief Propagation (BP) approximations 

  • Theory of Variational Inference: Inner and Outer Approximations 

  • Approximate Inference: Monte Carlo and Sequential Monte Carlo methods 

  • Markov Chain Monte Carlo 
    - Metropolis-Hastings 
    - Hamiltonian Monte Carlo 
    - Langevin Dynamics 


    Module 3: Deep Learning & Generative Models

  • Statistical and Algorithmic Foundations of Deep Learning 
    - Insight into DL 
    - Connections to GM 

  • Building blocks of DL 
    - RNN and LSTM 
    - CNN, Transformers 
    - Attention mechanisms 
    - (Case studies in NLP) 

  • Deep generative models (part 1): 
    Overview of advances and theoretical basis of deep generative models
     
    - Wake sleep algorithm 
    - Variational autoencoders 
    - Generative adversarial networks 

  • Deep generative models (part 2) 
    - Variational Autoencoders (VAE) 
    - Normalizing Flows 
    - Inverse Autoregressive Flows 
    - GANs and Implicit Models 

  • A unified view of deep generative models
    - New formulations of deep generative models 
    - Symmetric modeling of latent and visible variables 
    - Evaluation of Deep Generative Models


Module 4: Reinforcement Learning & Control Through Inference in GM

  • Sequential decision making (part 1): The framework 
    - Brief introduction to reinforcement learning (RL) 
    - Connections to GM: RL and control as inference 

  • Sequential decision making (part 2): The algorithms 
    - Maximum entropy RL and inverse RL 
    - Max-entropy policy gradient algorithms 
    - Soft Q-learning algorithms 
    - Some open questions/challenges 
    - Applications/case studies (games, robotics, etc.) 



Module 5: Nonparametric methods

  • Bayesian non-parameterics 
    - Dirichlet process (DP) 
    - Hierarchical Dirichlet Process (HDP) 
    - Chinese Restaurant Process (CRP) 
    - Indian Buffet Process (IBP) 

  • Gaussian processes (GPs) and elements of meta-learning 
    - GPs and (deep) kernel learning 
    - Meta-learning formulation as learning a process 
    - Hypernetworks and contextual networks 
    - Neural processes (NPs) as an approximation to GPs 

  • Regularized Bayesian GMs (structured sparsiry, diversity, etc.) 

  • Elements of Spectral & Kernel GMs 

    Module 6: Modular and scalable algorithms and systems

  • Automated black-box variational inference and elements of probabilistic programming 

  • Scalable algorithms and systems for learning, inference, and prediction 

  • Industialization of AI: standards, modules, building-blocks, and platform 



附录第一章

【讲义下载】

 请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“PGM2019” 就可以获取本文的下载链接~ 

  • 专知《深度学习:算法到实战》2019年全部完成欢迎扫码报名学习!





-END-

专 · 知

专知《深度学习:算法到实战》课程全部完成!465位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!


请加专知小助手微信(扫一扫如下二维码添加),咨询《深度学习:算法到实战》参团限时优惠报名~

欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
51

相关内容

概率图模型是图灵奖获得者Pearl开发出来的用图来表示变量概率依赖关系的理论。概率图模型理论分为概率图模型表示理论,概率图模型推理理论和概率图模型学习理论。
最新!Yann Lecun 纽约大学Spring2020深度学习课程,附PPT下载
【课程】概率图模型,卡内基梅隆大学邢波
专知会员服务
69+阅读 · 2019年11月4日
【课程】伯克利2019全栈深度学习课程(附下载)
专知会员服务
56+阅读 · 2019年10月29日
【课程】浙大陈华钧教授《知识图谱导论》课程系列PPT
专知会员服务
170+阅读 · 2019年10月29日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
统计学习方法第一版课程PPT
AINLP
13+阅读 · 2019年5月14日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Inferred successor maps for better transfer learning
Conditional BERT Contextual Augmentation
Arxiv
8+阅读 · 2018年12月17日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员