Generative Adversarial Networks (GANs) convergence in a high-resolution setting with a computational constrain of GPU memory capacity (from 12GB to 24 GB) has been beset with difficulty due to the known lack of convergence rate stability. In order to boost network convergence of DCGAN (Deep Convolutional Generative Adversarial Networks) and achieve good-looking high-resolution results we propose a new layered network structure, HDCGAN, that incorporates current state-of-the-art techniques for this effect. A novel dataset, Curt\'o Zarza (CZ), containing human faces from different ethnical groups in a wide variety of illumination conditions and image resolutions is introduced. CZ is enhanced with HDCGAN synthetic images, thus being the first GAN augmented face dataset. We conduct extensive experiments on CelebA and CZ.
翻译:由于已知的趋同率缺乏稳定性,在高分辨率环境下,GPU内存能力(从12GB到24GB)的计算制约下,GAAN(GANs)在高清晰度环境下的趋同,由于已知的趋同率缺乏稳定性,很难被困住。为了推动DCGAN(深电动产生反转网络)的网络趋同并取得高清晰度的结果,我们建议建立一个新的多层网络结构,HDCGAN(HDCGAN),将目前最先进的技术纳入这一效应。一个新的数据集,Curt\'o Zarza(CZZ),包含不同种族群体的面孔,具有多种发光条件和图像分辨率。CAZ用HDCGAN合成图像加强CZ,因此成为首个GAN增强面像数据集。我们在CelebA和CZ进行广泛的实验。