MLtuner automatically tunes settings for training tunables (such as the learning rate, the momentum, the mini-batch size, and the data staleness bound) that have a significant impact on large-scale machine learning (ML) performance. Traditionally, these tunables are set manually, which is unsurprisingly error-prone and difficult to do without extensive domain knowledge. MLtuner uses efficient snapshotting, branching, and optimization-guided online trial-and-error to find good initial settings as well as to re-tune settings during execution. Experiments show that MLtuner can robustly find and re-tune tunable settings for a variety of ML applications, including image classification (for 3 models and 2 datasets), video classification, and matrix factorization. Compared to state-of-the-art ML auto-tuning approaches, MLtuner is more robust for large problems and over an order of magnitude faster.
翻译:MLtuner 自动调整对大型机器学习(ML)性能有重大影响的金枪鱼( 学习率、 动力、 微型批量尺寸 和数据粘合) 培训金枪鱼( 如学习率、 动力、 微型批量尺寸 和数据粘合) 的设置。 传统上, 这些金枪鱼是手工设定的, 其出错率极小, 且没有广泛的域知识也难以做到。 MLTuer 使用高效的抓图、 分支和优化引导的在线试样和传感器来寻找良好的初始设置, 以及执行过程中的再调试设置。 实验显示 MLtuner 能够为各种 ML 应用程序, 包括图像分类( 3个模型和2个数据集 ) 、 视频分类和矩阵因子化, 包括图像分类( 3个模型和2个数据集 ) 、 视频分类和矩阵因子化。 与最先进的ML自动调控法相比, MLtuner 更强大, 用于大型问题和超大型级速度 。