Knowledge graph (KG) plays an increasingly important role in recommender systems. Recently, graph neural networks (GNNs) based model has gradually become the theme of knowledge-aware recommendation (KGR). However, there is a natural deficiency for GNN-based KGR models, that is, the sparse supervised signal problem, which may make their actual performance drop to some extent. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring the contrastive learning in KG-aware recommendation and propose a novel multi-level cross-view contrastive learning mechanism, named MCCLK. Different from traditional contrastive learning methods which generate two graph views by uniform data augmentation schemes such as corruption or dropping, we comprehensively consider three different graph views for KG-aware recommendation, including global-level structural view, local-level collaborative and semantic views. Specifically, we consider the user-item graph as a collaborative view, the item-entity graph as a semantic view, and the user-item-entity graph as a structural view. MCCLK hence performs contrastive learning across three views on both local and global levels, mining comprehensive graph feature and structure information in a self-supervised manner. Besides, in semantic view, a k-Nearest-Neighbor (kNN) item-item semantic graph construction module is proposed, to capture the important item-item semantic relation which is usually ignored by previous work. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/MCCLK.
翻译:知识图( KG) 在建议系统中的作用越来越重要。 最近, 基于图形神经网络( GNN) 的模型逐渐成为知识认知建议的主题。 然而,基于基于 GNN 的 KGR 模型存在自然缺陷, 也就是说, 缺乏监督的信号问题, 这使得其实际性能可能在某种程度上下降。 受最近通过对比性学习采矿监督的数据本身信号的成功启发, 本文中我们侧重于探索KG- aware 建议的对比性学习, 并提议一个新的多级跨视图对比学习机制, 名为 MCCLK。 不同于传统的对比性实验方法, 后者通过统一的数据增强计划( 如腐败或下降)产生两种图形观点。 我们全面考虑KG- awe建议的三个不同的图形观点, 包括全球一级的结构视图、 地方一级的协作和语系观点。 具体地, 我们把用户- 项图视为协作性视图, 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 度- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项-,, 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项- 项-