User-generated content (UGC) live videos are often bothered by various distortions during capture procedures and thus exhibit diverse visual qualities. Such source videos are further compressed and transcoded by media server providers before being distributed to end-users. Because of the flourishing of UGC live videos, effective video quality assessment (VQA) tools are needed to monitor and perceptually optimize live streaming videos in the distributing process. In this paper, we address \textbf{UGC Live VQA} problems by constructing a first-of-a-kind subjective UGC Live VQA database and developing an effective evaluation tool. Concretely, 418 source UGC videos are collected in real live streaming scenarios and 3,762 compressed ones at different bit rates are generated for the subsequent subjective VQA experiments. Based on the built database, we develop a \underline{M}ulti-\underline{D}imensional \underline{VQA} (\textbf{MD-VQA}) evaluator to measure the visual quality of UGC live videos from semantic, distortion, and motion aspects respectively. Extensive experimental results show that MD-VQA achieves state-of-the-art performance on both our UGC Live VQA database and existing compressed UGC VQA databases.
翻译:用户生成的内容 (UGC) 直播视频在捕获过程中经常受到各种失真影响,因此展现出不同的视觉质量。这些源视频在分发给终端用户之前还会被媒体服务器提供商进行压缩和转码。由于 UGC 直播视频的迅速发展,需要有效的视频质量评估工具来监控和感知优化直播流视频的分发过程。在本文中,我们通过构建首个主观 UGC 直播视频质量评估数据库并开发有效的评估工具来解决UGC Live VQA问题。具体而言,我们在真实的直播流场景中收集了 418 个源 UGC 视频,并生成了 3,762 个不同比特率的压缩版本用于后续主观 VQA 实验。基于该数据库,我们开发了一种多维度 VQA (MD-VQA) 评估器,分别从语义、失真和运动方面衡量 UGC 直播视频的视觉质量。广泛的实验结果表明,MD-VQA 在我们的 UGC Live VQA 数据库和现有的压缩 UGC VQA 数据库上均实现了最先进的性能。