数据库( Database )或数据库管理系统( Database management systems )是按照数据结构来组织、存储和管理数据的仓库。目前数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。

VIP内容

摘要: 数据库自然语言接口(natural language interface to database, NLIDB)能够凭借自然语言描述实现数据库查询操作,是促进用户无障碍地与数据库交互的重要工具.因为NLIDB具有较高的应用价值,近年来一直受到学术与商业领域的关注.目前成熟的NLIDB系统大部分基于经典自然语言处理方法,即通过指定的规则实现自然语言查询到结构化查询的转化.但是基于规则的方法仍然存在拓展性不强的缺陷.深度学习方法具有分布式表示和深层次抽象表示等优势,能深入挖掘自然语言中潜在的语义特征.因此近年来在NLIDB中,引入深度学习技术成为了热门的研究方向.针对基于深度学习的NLIDB研究进展进行总结:首先以解码方法为依据,将现有成果归纳为4种类型分别进行分析;然后汇总了7种模型中常用的辅助方法;最后根据目前尚待解决的问题,提出未来仍需关注的研究方向.

https://crad.ict.ac.cn/CN/10.7544/issn1000-1239.2021.20200209

成为VIP会员查看完整内容
0
19

最新论文

Deploying Machine Learning (ML) algorithms within databases is a challenge due to the varied computational footprints of modern ML algorithms and the myriad of database technologies each with its own restrictive syntax. We introduce an Apache Spark-based micro-service orchestration framework that extends database operations to include web service primitives. Our system can orchestrate web services across hundreds of machines and takes full advantage of cluster, thread, and asynchronous parallelism. Using this framework, we provide large scale clients for intelligent services such as speech, vision, search, anomaly detection, and text analysis. This allows users to integrate ready-to-use intelligence into any datastore with an Apache Spark connector. To eliminate the majority of overhead from network communication, we also introduce a low-latency containerized version of our architecture. Finally, we demonstrate that the services we investigate are competitive on a variety of benchmarks, and present two applications of this framework to create intelligent search engines, and real-time auto race analytics systems.

0
0
下载
预览
Top