Few-shot classification tasks aim to classify images in query sets based on only a few labeled examples in support sets. Most studies usually assume that each image in a task has a single and unique class association. Under these assumptions, these algorithms may not be able to identify the proper class assignment when there is no exact matching between support and query classes. For example, given a few images of lions, bikes, and apples to classify a tiger. However, in a more general setting, we could consider the higher-level concept of large carnivores to match the tiger to the lion for semantic classification. Existing studies rarely considered this situation due to the incompatibility of label-based supervision with complex conception relationships. In this work, we advanced the few-shot learning towards this more challenging scenario, the semantic-based few-shot learning, and proposed a method to address the paradigm by capturing the inner semantic relationships using interactive psychometric learning. We evaluate our method on the CIFAR-100 dataset. The results show the merits of our proposed method.
翻译:少见的分类任务旨在根据支持组中仅有的几个标签示例对查询组中的图像进行分类。 多数研究通常假设任务中的每个图像有一个单一和独特的分类关联。 根据这些假设, 这些算法可能无法在支持类和查询类之间没有精确匹配时确定适当的分类任务 。 例如, 以狮子、 自行车和苹果的几张图像来对老虎进行分类 。 但是, 在更笼统的环境下, 我们可以考虑大型食肉动物的更高层次概念, 以匹配虎与狮子的语义分类 。 现有的研究很少考虑到这种情况, 因为基于标签的监督与复杂的受孕关系不相容。 在这项工作中, 我们推进了对这个更具挑战性的情景的微小的学习, 即语义学的几张照片学习, 并提出了一种方法, 通过互动的心理测量学习来捕捉内语系关系来解决范式 。 我们评估了我们在CFAR- 100数据集上的方法 。 结果显示了我们拟议方法的优点 。