This paper delves into the task of arbitrary modality salient object detection (AM SOD), aiming to detect salient objects from arbitrary modalities, eg RGB images, RGB-D images, and RGB-D-T images. A novel modality-adaptive Transformer (MAT) will be proposed to investigate two fundamental challenges of AM SOD, ie more diverse modality discrepancies caused by varying modality types that need to be processed, and dynamic fusion design caused by an uncertain number of modalities present in the inputs of multimodal fusion strategy. Specifically, inspired by prompt learning's ability of aligning the distributions of pre-trained models to the characteristic of downstream tasks by learning some prompts, MAT will first present a modality-adaptive feature extractor (MAFE) to tackle the diverse modality discrepancies by introducing a modality prompt for each modality. In the training stage, a new modality translation contractive (MTC) loss will be further designed to assist MAFE in learning those modality-distinguishable modality prompts. Accordingly, in the testing stage, MAFE can employ those learned modality prompts to adaptively adjust its feature space according to the characteristics of the input modalities, thus being able to extract discriminative unimodal features. Then, MAFE will present a channel-wise and spatial-wise fusion hybrid (CSFH) strategy to meet the demand for dynamic fusion. For that, CSFH dedicates a channel-wise dynamic fusion module (CDFM) and a novel spatial-wise dynamic fusion module (SDFM) to fuse the unimodal features from varying numbers of modalities and meanwhile effectively capture cross-modal complementary semantic and detail information, respectively. Moreover, CSFH will carefully align CDFM and SDFM to different levels of unimodal features based on their characteristics for more effective complementary information exploitation.
翻译:暂无翻译