Low-dose Computed Tomography is a common issue in reality. Current reduction, sparse sampling and limited-view scanning can all cause it. Between them, limited-view CT is general in the industry due to inevitable mechanical and physical limitation. However, limited-view CT can cause serious imaging problem on account of its massive information loss. Thus, we should effectively utilize the scant prior information to perform completion. It is an undeniable fact that CT imaging slices are extremely dense, which leads to high continuity between successive images. We realized that fully exploit the spatial correlation between consecutive frames can significantly improve restoration results in video inpainting. Inspired by this, we propose a deep learning-based three-stage algorithm that hoist limited-view CT imaging quality based on spatial information. In stage one, to better utilize prior information in the Radon domain, we design an adversarial autoencoder to complement the Radon data. In the second stage, a model is built to perform inpainting based on spatial continuity in the image domain. At this point, we have roughly restored the imaging, while its texture still needs to be finely repaired. Hence, we propose a model to accurately restore the image in stage three, and finally achieve an ideal inpainting result. In addition, we adopt FBP instead of SART-TV to make our algorithm more suitable for real-time use. In the experiment, we restore and reconstruct the Radon data that has been cut the rear one-third part, they achieve PSNR of 40.209, SSIM of 0.943, while precisely present the texture.
翻译:低剂量光谱成像仪是现实中常见的问题。 当前的缩小、 稀少的取样和有限视图扫描可以全部导致它。 在它们之间, 有限视图CT在工业中由于不可避免的机械和物理限制而具有一般性。 但是, 有限视图CT 由于其巨大的信息损失而可能造成严重的成像问题。 因此, 我们应有效利用先前缺少的信息来完成。 不可否认的事实是, CT 成像切片非常稠密, 导致连续图像之间的高度连续性。 我们意识到充分利用连续框架之间的空间相关性可以大大改善视频油漆的恢复结果。 受此启发, 我们提出基于空间信息的基于深层次学习的三阶段算法, 基于空间信息, 有限视图CT 可能会造成严重的成像问题。 然而, 在第一阶段, 为了更好地利用Radon 域的先前信息, 我们应该设计一个对抗性自动编码器来补充Radon 数据 。 在第二阶段, 正在建立一个基于图像域空间连续性的绘制模型。 在这一点上, 我们已大致地修复了成像的图像,, 需要精确地修复它的纹度 。 在40 阶段里, 需要精确地修复一个精确地修正。 因此, 我们建议将SIM 重新使用一个模型 重新使用一个模型, 重建一个真正的S 。