Within the domain of Computational Fluid Dynamics, Direct Numerical Simulation (DNS) is used to obtain highly accurate numerical solutions for fluid flows. However, this approach for numerically solving the Navier-Stokes equations is extremely computationally expensive mostly due to the requirement of greatly refined grids. Large Eddy Simulation (LES) presents a more computationally efficient approach for solving fluid flows on lower-resolution (LR) grids but results in an overall reduction in solution fidelity. Through this paper, we introduce a novel deep learning framework SR-DNS Net, which aims to mitigate this inherent trade-off between solution fidelity and computational complexity by leveraging deep learning techniques used in image super-resolution. Using our model, we wish to learn the mapping from a coarser LR solution to a refined high-resolution (HR) DNS solution so as to eliminate the need for performing DNS on highly refined grids. Our model efficiently reconstructs the high-fidelity DNS data from the LES like low-resolution solutions while yielding good reconstruction metrics. Thus our implementation improves the solution accuracy of LR solutions while incurring only a marginal increase in computational cost required for deploying the trained deep learning model.


翻译:在计算液流动力学领域,直接数字模拟(DNS)用于为流体流量获得非常精确的数字解决方案。然而,这种用数字解决纳维-斯托克方程式的方法在计算上极其昂贵,主要由于对精密网格的要求。大型埃迪模拟(LES)提供了一种更高效的计算方法,用于解决低分辨率(LR)电网流流,但导致总体降低溶解忠度。我们通过本文件引入了一个新的深层次学习框架SR-DNS Net,目的是通过利用图像超分辨率中所使用的深层学习技术,减少溶解忠性和计算复杂性之间的内在权衡。我们希望利用我们的模型,从粗略LRM解决方案到精密高分辨率(HR) DNS解决方案的绘图方法,从而消除了在高分辨率电网上应用DNS的必要性。我们的模式有效地从低分辨率解决方案中重建高密度的DNS数据,同时产生良好的重建指标。因此,我们的实施将改进深层LRM解决方案的精确性,同时只进行深层计算。

0
下载
关闭预览

相关内容

域名系统(英文: Domain  Name  System, DNS)是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
6+阅读 · 2018年12月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员