This paper presents a method for optimizing object detection models by combining weight pruning and singular value decomposition (SVD). The proposed method was evaluated on a custom dataset of street work images obtained from https://universe.roboflow.com/roboflow-100/street-work. The dataset consists of 611 training images, 175 validation images, and 87 test images with 7 classes. We compared the performance of the optimized models with the original unoptimized model in terms of frame rate, mean average precision (mAP@50), and weight size. The results show that the weight pruning + SVD model achieved a 0.724 mAP@50 with a frame rate of 1.48 FPS and a weight size of 12.1 MB, outperforming the original model (0.717 mAP@50, 1.50 FPS, and 12.3 MB). Precision-recall curves were also plotted for all models. Our work demonstrates that the proposed method can effectively optimize object detection models while balancing accuracy, speed, and model size.
翻译:本文介绍了一种优化天体探测模型的方法,将重量调整和单值分解结合起来(SVD)。对拟议方法的评估是在从https://universe.roboflow.com/roboflow-100/street-work获得的街头工作图像的定制数据集上进行的。数据集由611个培训图像、175个验证图像和87个测试图像组成,共7个等级。我们将优化模型的性能与原未优化模型进行比较,包括框架速率、平均平均精度(mAP@50)和重量大小。结果显示,重量调整+SVD模型实现了0.724 mAP@50,框架速率为1.48,重量为12.1 MB,比原模型(0.717 mAP@50、1.50 FPS和12.3 MB)要强。还绘制了所有模型的精度-回调曲线。我们的工作表明,拟议的方法可以有效地优化天体探测模型,同时平衡精度、速度和模型大小。</s>