Object detection and recognition are fundamental functions underlying the success of species. Because the appearance of an object exhibits a large variability, the brain has to group these different stimuli under the same object identity, a process of generalization. Does the process of generalization follow some general principles or is it an ad-hoc "bag-of-tricks"? The Universal Law of Generalization provided evidence that generalization follows similar properties across a variety of species and tasks. Here we test the hypothesis that the internal representations underlying generalization reflect the natural properties of object detection and recognition in our environment rather than the specifics of the system solving these problems. By training a deep-neural-network with images of "clear" and "camouflaged" animals, we found that with a proper choice of category prototypes, the generalization functions are monotone decreasing, similar to the generalization functions of biological systems. Our findings support the hypothesis of the study.
翻译:对象的探测和识别是物种成功的基本功能。 因为对象的外观显示出很大的变异性, 大脑必须将这些不同的刺激按相同的对象特性, 一个一般化的过程来分组。 普遍性的过程是否遵循一些一般性原则, 或者它是一个“ 包包” 的特设原则? 普遍化法 提供了证据, 概括化在各种物种和任务中具有相似的特性。 我们在这里测试一个假设, 概括化背后的内部表现反映了物体探测和识别在我们的环境中的自然特性, 而不是解决这些问题的系统的具体特性。 通过对“ 清晰” 和“ 笼罩” 动物的图像进行深海神经网络培训, 我们发现, 通过适当选择类别原型, 普通化功能是单质的, 类似于生物系统的一般化功能。 我们的调查结论支持了研究的假设 。