We address the problem of multi-person 3D body pose and shape estimation from a single image. While this problem can be addressed by applying single-person approaches multiple times for the same scene, recent works have shown the advantages of building upon deep architectures that simultaneously reason about all people in the scene in a holistic manner by enforcing, e.g., depth order constraints or minimizing interpenetration among reconstructed bodies. However, existing approaches are still unable to capture the size variability of people caused by the inherent body scale and depth ambiguity. In this work, we tackle this challenge by devising a novel optimization scheme that learns the appropriate body scale and relative camera pose, by enforcing the feet of all people to remain on the ground floor. A thorough evaluation on MuPoTS-3D and 3DPW datasets demonstrates that our approach is able to robustly estimate the body translation and shape of multiple people while retrieving their spatial arrangement, consistently improving current state-of-the-art, especially in scenes with people of very different heights


翻译:我们从一个图像中处理多人3D身体的外形和形状估计问题。虽然这个问题可以通过对同一场景多次采用单一人的方法来解决,但最近的工作显示,通过执行,例如深度秩序限制或尽量减少重建的机体之间的相互渗透,以整体方式同时对现场所有人进行解释的深层建筑,通过执行,例如深度秩序限制或尽量减少重建后机体之间的相互渗透,可以全面地同时对现场所有人进行解释。然而,现有办法仍然无法捕捉由固有体体积和深度模糊性造成的人体大小变化。在这项工作中,我们通过设计一种新颖的优化计划来应对这一挑战,这种优化计划能够了解适当的体积尺度和相对摄影机的构成,通过强制所有人脚保持在地面上。对MuPOTS-3D和3DPW数据集的彻底评估表明,我们的方法能够对多人的体形体转换和形状进行精确估计,同时恢复他们的空间安排,不断改进目前的状态,特别是在与高度非常不同的人在一起的场景区,特别是在非常高的场景区里,不断改进当前的状态。

0
下载
关闭预览

相关内容

【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
VALSE Webinar 19-05期 自动机器学习 AutoML
VALSE
8+阅读 · 2019年2月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
VALSE Webinar 19-05期 自动机器学习 AutoML
VALSE
8+阅读 · 2019年2月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员