Recently, hyperspectral imaging (HSI) has attracted increasing research attention, especially for the ones based on a coded aperture snapshot spectral imaging (CASSI) system. Existing deep HSI reconstruction models are generally trained on paired data to retrieve original signals upon 2D compressed measurements given by a particular optical hardware mask in CASSI, during which the mask largely impacts the reconstruction performance and could work as a "model hyperparameter" governing on data augmentations. This mask-specific training style will lead to a hardware miscalibration issue, which sets up barriers to deploying deep HSI models among different hardware and noisy environments. To address this challenge, we introduce mask uncertainty for HSI with a complete variational Bayesian learning treatment and explicitly model it through a mask decomposition inspired by real hardware. Specifically, we propose a novel Graph-based Self-Tuning (GST) network to reason uncertainties adapting to varying spatial structures of masks among different hardware. Moreover, we develop a bilevel optimization framework to balance HSI reconstruction and uncertainty estimation, accounting for the hyperparameter property of masks. Extensive experimental results and model discussions validate the effectiveness (over 33/30 dB) of the proposed GST method under two miscalibration scenarios and demonstrate a highly competitive performance compared with the state-of-the-art well-calibrated methods. Our code and pre-trained model are available at https://github.com/Jiamian-Wang/mask_uncertainty_spectral_SCI
翻译:最近,超光谱成像(HSI)已引起越来越多的研究关注,尤其是那些基于编码孔径光快照光谱成像(CASSI)系统的超光谱成像(HSI),现有的深深重HSI重建模型一般都经过配对数据培训,以便在CASSI中特定光学硬件面具提供的2D压缩测量仪上检索原始信号,在2D压缩测量仪上采集原始信号,CASSI中特定光学硬件面具主要影响重建业绩,可以作为管理数据扩增的“模范超光度仪”工作。这种面罩特定培训风格将导致硬件校准问题,这为在不同硬件和噪音环境中部署深重的HSI模型设置障碍。为了应对这一挑战,我们引入了HSI隐蔽不确定性的全变异性巴亚学习处理,并通过由真实硬件启发的掩码解压缩明确模型进行模拟。具体地说,我们建议建立一个新的基于图形的自导网,以根据不同硬件的不同的掩码空间结构进行调整。此外,我们开发了一个双级优化框架,以平衡HSISI重建/不确定性估计,计算超光度掩码特性。广泛的实验结果和模型验证了在33/30_Dlibal-libas-rma-coma 和根据两种高调制的GST-ral-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-co-la-la-la-la-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-