In this paper, a novel mask based deep ranking neural network with skipped fusing layer (MaskReID) is proposed for person re-identification (Re-ID). For person Re-ID, there are multiple challenges co-exist throughout the re-identification process, including cluttered background, appearance variations (illumination, pose, occlusion, etc.) among different camera views and interference of samples of similar appearance. A compact framework is proposed to address these problems. Firstly, to address the problem of cluttered background, masked images which are the image segmentations of the original images are incorporated as input in the proposed neural network. Then, to remove the appearance variations so as to obtain more discriminative feature, a new network structure is proposed which fuses feature of different layers as the final feature. This makes the final feature a combination of all the low, middle and high level feature, which is more informative. Lastly, as person Re-ID is a special image retrieval task, a novel ranking loss is designed to optimize the whole network. The ranking loss relieved the interference problem of similar samples while producing ranking results. The experimental results demonstrate that the proposed method consistently outperforms the state-of-the-art methods on many person Re-ID datasets, especially large-scale datasets, such as, CUHK03, Market1501 and DukeMTMC-reID.


翻译:在本文中,为重新确认身份(Re-ID),提议了基于深层次神经网络的新型面罩,上面有悬浮层(MaskReID),上面为人重新识别(Re-ID)。对于人重新识别,整个再识别过程中存在多重挑战,包括背景混乱、不同镜头的外观变化(照明、姿势、隐蔽等)和类似外观样本的干扰。为了解决这些问题,建议了一个紧凑的框架。首先,为了解决背景混乱问题,作为原始图像图像的图像分割部分的蒙面图像被纳入拟议的神经网络。然后,为了消除外观变化,以获得更具歧视性的特征,提出了一个新的网络结构,将不同层的特征结合为最终特征。这使得最后的特征是所有低、中、高层次特征的组合,这更具有信息性。最后,由于人再识别是一个特殊的图像检索任务,因此设计了一个新的排名损失,以优化整个网络。排序损失减轻了类似样本的干扰问题,同时产生了排名结果。然后,为了消除外观的干扰问题,为了获得更具歧视性的特征的特征,提出了一个新的网络,新的网络方法,例如K-MT-MT-S-S-S-S-S-M-S-S-S-S-S-S-S-S-S-S-S-S-S-S-M-S-S-S-S-S-S-S-S-S-S-S-S-M-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-M-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

8
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Top
微信扫码咨询专知VIP会员