The pre-trained conversational models still fail to capture the implicit commonsense (CS) knowledge hidden in the dialogue interaction, even though they were pre-trained with an enormous dataset. In order to build a dialogue agent with CS capability, we firstly inject external knowledge into a pre-trained conversational model to establish basic commonsense through efficient Adapter tuning (Section 4). Secondly, we propose the ``two-way learning'' method to enable the bidirectional relationship between CS knowledge and sentence pairs so that the model can generate a sentence given the CS triplets, also generate the underlying CS knowledge given a sentence (Section 5). Finally, we leverage this integrated CS capability to improve open-domain dialogue response generation so that the dialogue agent is capable of understanding the CS knowledge hidden in dialogue history on top of inferring related other knowledge to further guide response generation (Section 6). The experiment results demonstrate that CS\_Adapter fusion helps DialoGPT to be able to generate series of CS knowledge. And the DialoGPT+CS\_Adapter response model adapted from CommonGen training can generate underlying CS triplets that fits better to dialogue context.
翻译:培训前的谈话模式仍然未能捕捉到对话互动中隐藏的隐性常识(CS)知识,尽管它们事先经过了庞大的数据集的训练。为了建立具有CS能力的对话代理器,我们首先将外部知识注入一个经过训练的谈话模式,以便通过有效的调适器调适建立基本的常识(第4节)。第二,我们建议“双向学习”方法,使CS知识与句子之间的双向关系能够使CS知识与句子之间产生双向关系,从而使该模式能够根据CS三重奏生成一个句子,并产生基本的CS知识(第5节)。最后,我们利用这种综合的CS能力来改进开放式对话的响应生成,以便对话代理器能够理解对话历史中隐藏的CS知识,然后推断相关的其他知识来指导反应生成进一步的反应(第6节)。实验结果表明,CS&Adapter 有助于生成CS系列知识。DiloGPT+CS*-Adapter 响应模型,从共同的训练中可以产生更好的三重力对话。