In this paper, we develop two new randomized block-coordinate optimistic gradient algorithms to approximate a solution of nonlinear equations, which are called root-finding problems. Our first algorithm is non-accelerated with constant stepsizes, and achieves $\mathcal{O}(1/k)$ best-iterate convergence rate on $\mathbb{E}[ \Vert Gx^k\Vert^2]$ when the underlying operator $G$ is Lipschitz continuous and the equation $Gx = 0$ admits a weak Minty solution, where $\mathbb{E}[\cdot]$ is the expectation and $k$ is the iteration counter. Our second method is a new accelerated randomized block-coordinate optimistic gradient algorithm. We establish both $\mathcal{O}(1/k^2)$ and $o(1/k^2)$ last-iterate convergence rates on both $\mathbb{E}[ \Vert Gx^k\Vert^2]$ and $\mathbb{E}[ \Vert x^{k+1} - x^{k}\Vert^2]$ for this algorithm under the co-coerciveness of $G$. Then, we apply our methods to a class of finite-sum nonlinear inclusions which covers various applications in machine learning and statistical learning, especially in federated learning and network optimization. We obtain two new federated learning-type algorithms for this problem class with rigorous convergence rate guarantees.


翻译:在本文中, 我们开发了两个新的随机的区块坐标乐观梯度算法, 以近似于非线性方程式的解决方案, 称之为“ 根调查问题 ” 。 我们的第一个算法是不加速的, 并且以不断的阶梯化为折叠式( O) (1/ k) 实现 $\ mathbb{ E} [\ Vert Gx\ k\ Vert2] 的顶级操作员$ G$ 连续, 方程式 $x = 0 = 接受一个微软的 Minty 解决方案, 其中$\ mathbb{E} [\\ cdo] $ 是期望值, $ 和 $knational 折叠式( blickral) 的顶级递增缩缩缩缩放率。 我们用 $\ math{ O} (1/ k) 2 和 $ 美元 美元 美元 和 美元的顶级( k) 等积( we t\ vk) comlisteleaclecleining a lear lear learlearstelear) lear lear lecleclecleclecleclement a exlemental exlemental $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员