Nonnegative matrix factorization (NMF) is a popular model in the field of pattern recognition. It aims to find a low rank approximation for nonnegative data M by a product of two nonnegative matrices W and H. In general, NMF is NP-hard to solve while it can be solved efficiently under separability assumption, which requires the columns of factor matrix are equal to columns of the input matrix. In this paper, we generalize separability assumption based on 3-factor NMF M=P_1SP_2, and require that S is a sub-matrix of the input matrix. We refer to this NMF as a Co-Separable NMF (CoS-NMF). We discuss some mathematics properties of CoS-NMF, and present the relationships with other related matrix factorizations such as CUR decomposition, generalized separable NMF(GS-NMF), and bi-orthogonal tri-factorization (BiOR-NM3F). An optimization model for CoS-NMF is proposed and alternated fast gradient method is employed to solve the model. Numerical experiments on synthetic datasets, document datasets and facial databases are conducted to verify the effectiveness of our CoS-NMF model. Compared to state-of-the-art methods, CoS-NMF model performs very well in co-clustering task, and preserves a good approximation to the input data matrix as well.
翻译:在模式识别领域,非负矩阵因子化(NMF)是一种流行模式,在模式识别领域是一种流行模式模式,目的是通过两个非负矩阵W和H的产物,为非负数据MM找到一个低级近似点。 一般来说,NMF是难以解决的NNP-硬,而在分离假设下可以有效解决,这要求要素矩阵的列与输入矩阵的列等同。在本文中,我们根据3个因素的NMFMMM=P_1SP__2,对基于3个因素的NMFMMMM=P_1SP_2的分离性假设进行归纳,要求S是输入矩阵矩阵的一个子矩阵。我们将NMFMF称为可共同分离的NMFM(CS-NMFFF)。我们讨论共同-NMMF的数学特性,讨论共同-NMMMF的一些共同-NMF的数学特性特性特性特性,介绍与其他相关矩阵因CUR的分解、一般的NM(G-NM-NM数据-CS-C-CS)的模型、CS的模型、CS-CS的模型、C-CS的模型、CS-CS-C-C-C-S-S-S-S-S的模型-S-S的模型-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-、