Nonnegative matrix factorization (NMF) is a popular model in the field of pattern recognition. It aims to find a low rank approximation for nonnegative data M by a product of two nonnegative matrices W and H. In general, NMF is NP-hard to solve while it can be solved efficiently under separability assumption, which requires the columns of factor matrix are equal to columns of the input matrix. In this paper, we generalize separability assumption based on 3-factor NMF M=P_1SP_2, and require that S is a sub-matrix of the input matrix. We refer to this NMF as a Co-Separable NMF (CoS-NMF). We discuss some mathematics properties of CoS-NMF, and present the relationships with other related matrix factorizations such as CUR decomposition, generalized separable NMF(GS-NMF), and bi-orthogonal tri-factorization (BiOR-NM3F). An optimization model for CoS-NMF is proposed and alternated fast gradient method is employed to solve the model. Numerical experiments on synthetic datasets, document datasets and facial databases are conducted to verify the effectiveness of our CoS-NMF model. Compared to state-of-the-art methods, CoS-NMF model performs very well in co-clustering task, and preserves a good approximation to the input data matrix as well.


翻译:在模式识别领域,非负矩阵因子化(NMF)是一种流行模式,在模式识别领域是一种流行模式模式,目的是通过两个非负矩阵W和H的产物,为非负数据MM找到一个低级近似点。 一般来说,NMF是难以解决的NNP-硬,而在分离假设下可以有效解决,这要求要素矩阵的列与输入矩阵的列等同。在本文中,我们根据3个因素的NMFMMM=P_1SP__2,对基于3个因素的NMFMMMM=P_1SP_2的分离性假设进行归纳,要求S是输入矩阵矩阵的一个子矩阵。我们将NMFMF称为可共同分离的NMFM(CS-NMFFF)。我们讨论共同-NMMF的数学特性,讨论共同-NMMMF的一些共同-NMF的数学特性特性特性特性,介绍与其他相关矩阵因CUR的分解、一般的NM(G-NM-NM数据-CS-C-CS)的模型、CS的模型、CS-CS的模型、C-CS的模型、CS-CS-C-C-C-S-S-S-S-S的模型-S-S的模型-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-、

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
41+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Arxiv
9+阅读 · 2021年3月8日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
41+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Top
微信扫码咨询专知VIP会员