Nonnegative matrix factorization arises widely in machine learning and data analysis. In this paper, for a given factorization of rank r, we consider the sparse stochastic matrix factorization (SSMF) of decomposing a prescribed m-by-n stochastic matrix V into a product of an m-by-r stochastic matrix W and a sparse r-by-n stochastic matrix H. With the prescribed sparsity level, we reformulate the SSMF as an unconstrained nonvonvex-nonsmooth minimization problem and introduce a row-wise update algorithm for solving the minimization problem. We show that the proposed algorithm converges globally and the generated sequence converges to a special critical point of the cost function, which is a global minimizer over the W-factor as a whole and is nearly a global minimizer over each row vector of the H-factor. Numerical experiments on both synthetic and real data sets are given to demonstrate the effectiveness of our proposed algorithm.
翻译:在机器学习和数据分析中,出现了广泛的非负矩阵因子化。在本文中,对于等级 r 的某个特定因子化,我们认为将规定的m- by- schochistic 矩阵V分解成一个 m- by- schochistic 矩阵 W 和一个稀有 r- by schochatic 矩阵H 的产物的稀少的随机矩阵因子化(SSMF) 。在规定的宽度水平下,我们重新将SSMF改成一个未受控制的非vonvex- nonzmooot 最小化问题,并引入了一种解决最小化问题的行式更新算法。我们表明,拟议的算法和生成的序列汇集到成本函数的一个特殊临界点,即全球最小化于整个W- estorld,几乎是全球对H- factor的每个行矢量的最小化器。我们给出了合成和真实数据集的数值实验,以证明我们提议的算法的有效性。