In this paper, we consider the problem of Multi-Robot Path Planning (MRPP) in continuous space. The difficulty of the problem arises from the extremely large search space caused by the combinatorial nature of the problem and the continuous state space. We propose a two-level approach where the low level is a sampling-based planner Safe Interval RRT* (SI-RRT*) that finds a collision-free trajectory for individual robots. The high level can use any method that can resolve inter-robot conflicts where we employ two representative methods that are Prioritized Planning (SI-CPP) and Conflict Based Search (SI-CCBS). Experimental results show that SI-RRT* can quickly find a high-quality solution with a few samples. SI-CPP exhibits improved scalability while SI-CCBS produces higher-quality solutions compared to the state-of-the-art planners for continuous space.
翻译:暂无翻译