The great success of Physics-Informed Neural Networks (PINN) in solving partial differential equations (PDEs) has significantly advanced our simulation and understanding of complex physical systems in science and engineering. However, many PINN-like methods are poorly scalable and are limited to in-sample scenarios. To address these challenges, this work proposes a novel discrete approach termed Physics-Informed Graph Neural Network (PIGNN) to solve forward and inverse nonlinear PDEs. In particular, our approach seamlessly integrates the strength of graph neural networks (GNN), physical equations and finite difference to approximate solutions of physical systems. Our approach is compared with the PINN baseline on three well-known nonlinear PDEs (heat, Burgers and FitzHugh-Nagumo). We demonstrate the excellent performance of the proposed method to work with irregular meshes, longer time steps, arbitrary spatial resolutions, varying initial conditions (ICs) and boundary conditions (BCs) by conducting extensive numerical experiments. Numerical results also illustrate the superiority of our approach in terms of accuracy, time extrapolability, generalizability and scalability. The main advantage of our approach is that models trained in small domains with simple settings have excellent fitting capabilities and can be directly applied to more complex situations in large domains.
翻译:暂无翻译