For the first time exact analytical solutions to the eikonal equations in (1+1) dimensions with a refractive index being a saturated function of intensity are constructed. It is demonstrated that the solutions exhibit collapse; an explicit analytical expression for the self-focusing position, where the intensity tends to infinity, is found. Based on an approximated Lie symmetry group, solutions to the eikonal equations with arbitrary nonlinear refractive index are constructed. Comparison between exact and approximate solutions is presented. Approximate solutions to the nonlinear Schrodinger equation in (1+2) dimensions with arbitrary refractive index and initial intensity distribution are obtained. A particular case of refractive index consisting of Kerr refraction and multiphoton ionization is considered. It is demonstrated that the beam collapse can take place not only at the beam axis but also in an off-axis ring region around it. An analytical condition distinguishing these two cases is obtained and explicit formula for the self-focusing position is presented.


翻译:在(1+1)维面上,第一次对电子方程式的精确分析解决方案,其折射指数是强度饱和的函数,其折射指数为强度的饱和功能。它被证明,解决方案出现崩溃;在强度趋向无限的自我聚焦位置上,发现一个明确的分析表达方式。根据一个大致的 Lie 对称组,构建了含有任意的非线性反折指数的电子方程式的解决方案。提供了精确和近似解决方案的比较;获得了(1+2)维面上非线性施罗德因方程式的近似解决方案,该方程式带有任意的折射指数和初始强度分布。考虑了由 Kerr 折射和多光速电离子化构成的反折射指数的特例。它被证明,光子折射不仅可以在横轴轴中发生,而且还可以在周围的离轴区域发生。获得了区分这两个案例的分析条件,并提出了自定向位置的明确公式。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
4+阅读 · 2018年5月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员