We propose a geometric convexity shape prior preservation method for variational level set based image segmentation methods. Our method is built upon the fact that the level set of a convex signed distanced function must be convex. This property enables us to transfer a complicated geometrical convexity prior into a simple inequality constraint on the function. An active set based Gauss-Seidel iteration is used to handle this constrained minimization problem to get an efficient algorithm. We apply our method to region and edge based level set segmentation models including Chan-Vese (CV) model with guarantee that the segmented region will be convex. Experimental results show the effectiveness and quality of the proposed model and algorithm.
翻译:我们为基于变异级别设定的图像分割法建议了一种以几何等共振形状为形状的先前保存方法。 我们的方法建立在以下事实之上: 连接的已签名的远程函数的级别必须是曲线。 此属性使我们能够将复杂的几何共振转换成对函数的简单不平等制约。 基于高斯- 赛德尔的动态集成迭代用于处理这个限制最小化的问题,以获得有效的算法。 我们将我们的方法应用到基于区域和边缘的设定分化模型, 包括Chan- Vese(CV) 模型, 保证分块区域将是曲线。 实验结果显示拟议模型和算法的有效性和质量 。