General local depth functions ($LGD$) are used for describing the local geometric features and mode(s) in multivariate distributions. In this paper, we undertake a rigorous systematic study of $LGD$ and establish several analytical and statistical properties. First, we show that, when the underlying probability distribution is absolutely continuous with density $f(\cdot)$, the scaled version of $LGD$ (referred to as $\tau$-approximation) converges, uniformly and in $L^d(\mathbb{R}^p)$ to $f(\cdot)$ when $\tau$ converges to zero. Second, we establish that, as the sample size diverges to infinity the centered and scaled sample $LGD$ converge in distribution to a centered Gaussian process uniformly in the space of bounded functions on $\mathcal{H}_G$, a class of functions yielding $LGD$. Third, using the sample version of the $\tau$-approximation ($S \tau \hspace{-0.06cm} A$) and the gradient system analysis, we develop a new clustering algorithm. The validity of this algorithm requires several results concerning the uniform finite difference approximation of the gradient system associated with $S \tau \hspace{-0.06cm} A$. For this reason, we establish \emph{Bernstein}-type inequality for deviations between the centered and scaled sample $LGD$, which is also of independent interest. Finally, invoking the above results, we establish consistency of the clustering algorithm. Applications of the proposed methods to mode estimation and upper level set estimation are also provided. Finite sample performance of the methodology are evaluated using numerical experiments and data analysis.
翻译:本地通用深度函数 (LGD$) 用于描述本地几何特征和多变量分布中的模式。 在本文中, 我们对美元进行严格的系统化研究, 并确立若干分析和统计属性。 首先, 我们显示, 当基概率分布绝对连续使用密度$f(\ cdd) 美元时, 美元GD$的缩放版本( 被称为$\tau${ h=appximation) 统一, 以美元( mathbb{ R ⁇ p) 以美元( f) = (\\ cddot) 来描述多变量分布。 当$\ tau$ 接近零时, 我们进行严格的系统化研究, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 中, 以美元为单位, 以美元为单位, 以美元为单位, 美元为单位, 以美元为美元为单位, 美元为单位, 递化, 基值为单位, 基值 的基值, 基值, 基值分析。