Information of interest can often only be extracted from data by model fitting. When the functional form of such a model can not be deduced from first principles, one has to make a choice between different possible models. A common approach in such cases is to minimise the information loss in the model by trying to reduce the number of fit variables (or the model flexibility, respectively) as much as possible while still yielding an acceptable fit to the data. Model selection via the Akaike Information Criterion (AIC) provides such an implementation of Occam's razor. We argue that the same principles can be applied to optimise the penalty-strength of a penalised maximum-likelihood model. However, while in typical applications AIC is used to choose from a finite, discrete set of maximum-likelihood models the penalty optimisation requires to select out of a continuum of candidate models and these models violate the maximum-likelihood condition. We derive a generalised information criterion AICp that encompasses this case. It naturally involves the concept of effective free parameters which is very flexible and can be applied to any model, be it linear or non-linear, parametric or non-parametric, and with or without constraint equations on the parameters. We show that the generalised AICp allows an optimisation of any penalty-strength without the need of separate Monte-Carlo simulations. As an example application, we discuss the optimisation of the smoothing in non-parametric models which has many applications in astrophysics, like in dynamical modeling, spectral fitting or gravitational lensing.


翻译:感兴趣的信息往往只能通过模型安装从数据中提取。 当这种模型的功能形式无法从最初的原则中推导出时, 就必须在不同的可能的模式中做出选择。 在这类情况下, 一种共同的方法是尽量减少适合变量的数量( 或模型灵活性), 尽量减少模型中的信息损失, 同时仍能产生一个可接受的数据。 通过 Akaike Inform Struition (AIC) 进行的模型选择提供了奥卡姆剃刀的这种执行。 我们争辩说, 同样的原则可以适用于优化惩罚性最高接近性中最接近的模型的非惩罚强度。 但是, 在典型的应用中, AIC 通常采用从有限、 离散、 最接近性模型中选择最差的信息损失, 而这些模型则违反最大相似性条件。 我们从一个通用的信息标准 AICp 中包含了这个案例。 我们自然会包含一个有效的自由参数概念, 这个概念非常灵活, 可以适用于任何模型, 并且可以应用一个惩罚性最接近性的模型, 在不进行线性或非线性的最佳模型中选择性模型, 或不以普通的软度模型来显示一个限制性模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员