In this paper we provide a rigorous convergence analysis for the renowned particle swarm optimization method by using tools from stochastic calculus and the analysis of partial differential equations. Based on a time-continuous formulation of the particle dynamics as a system of stochastic differential equations, we establish convergence to a global minimizer of a possibly nonconvex and nonsmooth objective function in two steps. First, we prove consensus formation of an associated mean-field dynamics by analyzing the time-evolution of the variance of the particle distribution. We then show that this consensus is close to a global minimizer by employing the asymptotic Laplace principle and a tractability condition on the energy landscape of the objective function. These results allow for the usage of memory mechanisms, and hold for a rich class of objectives provided certain conditions of well-preparation of the hyperparameters and the initial datum. In a second step, at least for the case without memory effects, we provide a quantitative result about the mean-field approximation of particle swarm optimization, which specifies the convergence of the interacting particle system to the associated mean-field limit. Combining these two results allows for global convergence guarantees of the numerical particle swarm optimization method with provable polynomial complexity. To demonstrate the applicability of the method we propose an efficient and parallelizable implementation, which is tested in particular on a competitive and well-understood high-dimensional benchmark problem in machine learning.
翻译:在本文中,我们通过使用随机微积分和部分差异方程分析工具,为著名的粒子群温优化方法提供了严格的趋同分析分析。基于粒子动态作为随机微分方程系统的长期持续配制,我们通过两个步骤与一个全球最小化的可能非混凝土和非抽吸目标函数的集合。首先,我们通过分析粒子分布差异的时间变化来证明一个相关中位场动态的一致形成。然后,我们表明,这一共识接近于全球最小化,方法是采用无干扰拉比原则,并在目标函数的能源景观上设置一个可移动性条件。这些结果允许使用记忆机制,并持有丰富的目标类别,为超光谱度计和初始塔图提供了某些精心配置的条件。在第二步中,至少不产生记忆效果的情况下,我们提供了粒子粒子体温优化的中位近似值的量化结果,这说明了在相关平均拉比原则上与可互动的粒子系粒子系统趋同,在目标功能的能源景观上的可移动性条件。这些结果可以用来使用记忆机制,并保持丰富的目标级组合,同时展示了我们所测试的微缩缩缩缩缩缩度的微数方法。